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Humans spend a substantial amount of time trying to predict 
how others will behave. Which millennial has not agonized 
over the perfect emoji to round off a text message, hoping 

to elicit the desired response from a love interest? In a professional 
context, figuring out how a colleague will treat another co-worker 
during a disagreement can clarify whether it is worthwhile to enter-
tain future collaborations with that colleague. Even in large-scale 
societal coordination problems such as political activism1, climate 
change mitigation2 and disease control3, reliable knowledge about 
the future behaviours of others can be critical to reaching the 
desired outcome.

Despite the ubiquity of social predictions in daily life, little is 
known about how humans solve this difficult task. Consider try-
ing to predict whether a co-worker will be a good collaborator on 
a group project. We cannot assume that our co-worker will act just 
as they did in the past, because each project is different (the people 
involved, the current economic conditions and so on). Instead, we 
must selectively generalize what we know about our co-worker to 
this new situation. If we generalize too little from past experience, 
we deny ourselves potentially valuable social information, but gen-
eralizing too much makes us slow to respond to the changing behav-
iour of others. To solve this generalization dilemma during social 
prediction, humans probably build parsimonious mental models of 
others’ behaviour that are easy to update yet provide relatively accu-
rate predictions in diverse social settings4. How do we construct and 
use these mental models to predict the behaviours of others?

Here, we examine the possibility that motives—a term we use 
to encompass a range of stable preferences and personality traits 
spanning both moral and non-moral concerns—form the building 
blocks of these mental models of others’ behaviour. Motives, such as 
greed5, inequity aversion6,7 and risk aversion8,9, are plausible com-
ponents of such models because they can predict behaviour across 
contexts10, differ reliably between people10–14 and are inferred from 
an early age15–17. Studies of action understanding suggest that people 
can infer another’s motives by observing their actions18. For example,  

another’s food preference can be estimated by using Bayesian infer-
ence to compute which of several alternative foods is most likely to 
be selected19. However, this process becomes particularly challeng-
ing in naturalistic social settings because one behaviour can arise 
from several motives12,20. For instance, individuals may co-operate 
because they care about fairness6, or because they want to appear 
co-operative to others (reputation management)21, or simply 
because they feel good when helping22. To solve this inference prob-
lem, people must disambiguate the latent structure of another’s 
choice patterns—that is, their unobservable overarching goals and 
motives—across diverse social contexts.

Because it is unknown which cognitive mechanism supports 
learning of others’ latent motives, we test computational accounts 
of this structure learning process, which can identify mechanisms 
that are not readily seen by examining behaviour alone. Specifically, 
we evaluate whether a feature-based reinforcement learning system, 
thought to account for non-social, low-dimensional structure learn-
ing23–29, can also support structural learning during social predic-
tion. When applied to social cognition, feature-based reinforcement 
learning would require participants to learn latent, unobservable 
features that can account for a person’s behaviour, such as a motive 
(for example, greed or risk aversion). If successful, latent structure 
learning would allow for greater efficiency in social prediction 
by selectively attending23,25,30,31 to task information that is specifi-
cally relevant to the inferred motive. To assess whether this type of 
model applies to social prediction, we combine both behavioural 
and eye-tracking experiments with computational modelling of 
feature-based reinforcement learning.

In our experimental Social Prediction Game, participants are 
tasked with predicting the choices of another Player interacting with 
anonymous Opponents (Fig. 1a) in four types of economic games, 
each characterized by distinct tensions between potential gains and 
losses: the Harmony Game, the Snowdrift Game, Stag Hunt and 
Prisoner’s Dilemma (Fig. 1b; example payoff matrices for each game 
type are shown in Supplementary Fig. 1). As Players move between 
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games, the payoffs associated with co-operating and defecting 
shift. This causes the tensions associated with different underly-
ing motives to vary from game to game, revealing several distinctly 
structured patterns of behaviour13. For example, if a Player is moti-
vated by risk aversion, they will choose to co-operate in a Snowdrift 
Game (where both players are tempted to defect, but mutual defec-
tion yields the lowest payoff) but defect in a Stag Hunt (where both 
players are encouraged to co-operate, but unilateral co-operation 
yields the lowest payoff). Although these decisions seem contradic-
tory at first blush, they are consistent at a latent motive level, as these 
actions are both risk-averse in that they forgo the highest possible 
payoff in favour of minimizing potential losses13,32.

Other motives, such as greed or envy, yield differently structured 
choice patterns across games13 (Methods). This has two implica-
tions. First, when moving from game to game, the same action 
(for example, co-operate) can result from different motives, which 
means that a subject cannot rely only on actions to infer motives but 
instead must consider a Player’s action relative to the incentives of 
the current game. Second, the same motive (for example, risk aver-
sion) can produce different actions depending on the social ten-
sions in a given game. Together, these features of our task mirror the 
generalization dilemma of social prediction. The hidden structure 
of Players’ choices in our paradigm thus allows us to test whether 
and how participants selectively generalize knowledge about others’ 
behaviour to new social settings. We hypothesized that (1) people 
generalize information about others’ decisions between economic 

games on the basis of latent motives, (2) generalization is imple-
mented by a feature-based reinforcement learning system that sup-
ports an increasing focusing of attention on information relevant to 
the inferred motives and (3) people use these inferred motives to 
make more adaptive choices in different competitive contexts.

Results
In study 1, 150 participants played the Social Prediction Game, 
where they observed four different Players playing 16 trials of four 
different economic games. In each trial, the participants were asked 
what the Player would choose to do (co-operate or defect) in the 
current game, and to rate their confidence in their prediction (see 
the task screenshot in Supplementary Fig. 2). The games between 
the Players and their Opponents were presented as a 2 × 2 payoff 
matrix (Fig. 1a), where two of the four possible outcomes yield the 
same payoffs across all trials: (10,10) for mutual co-operation and 
(5,5) for mutual defection. The payoffs assigned to the other poten-
tial outcomes, labelled S for sucker’s payoff and T for temptation 
to defect, are drawn from a 4 × 4 grid (the game space) such that 
each of the 16 trials is a new game with a unique (S,T) combination. 
The varying (S,T) payoff values yield four canonical economic game 
types, which are represented in four quadrants of the (S,T) game 
space (Fig. 1b and Methods). For example, the classic Prisoner’s 
Dilemma is found at S < 5 and T > 10, where all players are best 
off defecting regardless of their opponent’s choice33. Due to these 
regularities in game incentives, human choice data reveal a limited 
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Fig. 1 | the Social Prediction Game. a, In each trial, the Social Prediction Game is presented as a symmetric payoff matrix describing the single-shot 
interaction between a Player (who is tracked across 16 consecutive trials) and anonymous Opponents (who are different in each trial). For each of the four 
possible outcomes (co-operate–co-operate, co-operate–defect and so on), the Player earns the value in the lower triangle, and the Opponent earns the 
value in the upper triangle. b, The values of S and T vary from trial to trial and are drawn from a 4 × 4 game space such that each trial belongs to one of four 
canonical economic game types: Harmony Game (HG), Snowdrift Game (SG), Stag Hunt (SH) and Prisoner’s Dilemma (PD). In the HG, S is high and T is 
low, meaning that all payoff-maximizing Players have a strong incentive to co-operate regardless of their social preferences or risk attitudes. In the SG, by 
contrast, T is higher than 10, meaning that the greatest payoff can be won through unilateral defection. This motivates Greedy Players to defect in the SG, 
while Risk-Averse Players prefer the relatively high S over the mutual defection payoff of 5. In the SH, the greatest possible payoff is 10, motivating Greedy 
Players to co-operate, while Risk-Averse Players avoid the low S by defecting. In the PD, defection always yields the greatest payoff for the individual. Refer 
to Supplementary Fig. 1 for example payoff matrices of each game type. c, Across these game types, the Player’s true behaviour (co-operate (C) or defect 
(D)) depends on the Player’s underlying strategy, which is deterministically programmed in each block of 16 trials.
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number of distinct patterns of correlated choice (that is, strategies) 
across the 16 games, with each strategy optimizing for a distinct 
human motive, such as risk aversion or envy13.

We programmed the Players to behave in line with one of four 
deterministic strategies: two found in human choice data at similar 
rates (namely, a Greedy strategy that maximizes the maximal pay-
off and a Risk-Averse strategy that maximizes the minimal payoff; 
respectively 20% and 21% of the population13) and two not found 
in human choice data but matched for statistical complexity (that 
is, Inverse Greedy and Inverse Risk-Averse; Fig. 1c). These motives 
were selected on two conditions. First, greedy and risk-averse 
motives are observed at comparable rates (~20%) in the general 
population13, which buffers against the possibility that a more 
dominant motive—such as envy—might unduly bias learning in the 
Social Prediction Game relative to a less dominant motive. Second, 
because greed and risk aversion have equally complex patterns of 
decisions across the game space (Fig. 1c), we can draw inferences 
about social learning processes without worrying about confounds 
relating to statistical complexity.

Selective generalization of social information. How might partici-
pants approach the Social Prediction Game? One possibility is that 
they expect a Player to simply repeat their past behaviour due to 
stable preferences for co-operation10. This could be thought of as 
basic reinforcement learning, where the participant learns the value 
of predicting ‘co-operate’ and ‘defect’ for the current Player with-
out distinguishing between different games (an approach doomed 
to fail in the more complex Social Prediction Game). Another pos-
sibility is that participants refrain from generalizing across games 
at all, because each trial is unique. Since all Players co-operate and 
defect on half the trials, both these strategies would yield on average 
50% accuracy in our task. However, the observed accuracy was sig-
nificantly greater (59.1% ± 9.1% (s.d.); two-tailed one-sample t-test: 
t(149) = 12.2, P < 0.001, Cohen’s d = 1.00).

A third possible strategy is naïve statistical learning, whereby par-
ticipants detect the mapping between S or T and the Player’s choices 
(for example, learning that Inverse Risk-Averse co-operates when 
S < 5). Such a strategy reflects how participants learn latent struc-
ture in non-social tasks containing abstract stimuli such as coloured 
shapes and fractals26,27. If true, task performance should be equal 
across all Player strategies, as each strategy is a step function with 
a single change point on the S or T dimension (Fig. 1c). However, 
performance was much higher for human than artificial strate-
gies (Greedy and Risk-Averse: average accuracy, 71.6% ± 10.5%; 
Inverse strategies: 46.5% ± 12.4%; two-tailed paired-samples t-test: 
t(149) = 22.0, P < 0.001, d = 1.80; Fig. 2a). This reveals that naïve 
statistical learning does not capture learning in this task, and sug-
gests that how we learn about other people differs from how we 
learn about objects (such as coloured shapes and fractals) in the 
non-social world.

These findings demonstrate that (1) the participants selectively 
generalize information across games by learning a latent structure 
that links game incentives to choice, and (2) the participants hold 
strong prior expectations about the nature of this latent structure, as 
they were able to predict the choices of the human Players but not 
artificial ones. We next used computational modelling to illuminate 
how the participants acquired and applied this latent structure when 
generalizing information about others’ decisions across games.

Motives guide social structure learning. To determine how partici-
pants generalize information across games during social prediction, 
we built a formal model of structural learning that could capture 
how the participants map the S and T game variables onto choice. 
We leveraged recent developments in feature-based reinforcement 
learning, where agents do not learn the value of stimuli per se (for 
example, apples or oranges) but rather the decision relevance of 

stimulus features (for example, their size or colour)23,28. We adapted 
this class of model by allowing it to learn not just over observable 
task features S and T but also over unobservable features such as 
game type or a Player’s motives. We then evaluated various sets of 
features to test how participants generalize learning across trials.

Task behaviour was best captured by a feature set that gen-
eralized information across games according to four human 
motives whose role in social decision-making is well-documented: 
Co-operativeness34, Greed5, Risk Aversion9,35 and Expected Value 
(EV) maximization36,37 (motive-based structure model; Fig. 3a 
and Methods). Model comparison using the Bayesian information 
criterion (BIC)38 showed that the average fit of this motive-based 
model was superior to several alternative models, which together 
systematically covered a range of regular behaviour patterns across 
the (S,T) game space. First, corroborating our earlier observation 
that participants generalize learning across trials, our motive-based 
model outperformed a model that treated each trial as unique and 
thus learned over 16 game features and an intercept (no structure; 
ΔBIC = −55.41 ± 25.2 (mean ± s.d.), two-tailed Wilcoxon sign-rank 
test, W = 7, P < 0.001, d = −2.20). Second, our motive-based model 
outperformed a plausible alternative model: one that recognizes how 
Player choices are stable within each game type (Harmony Game, 
Stag Hunt and so on) and thus learns over four game features and an 
intercept, generalizing learning within (but not selectively across) 
game types (game type-based structure; ΔBIC = −5.95 ± 10.23, 
W = 1641, P < 0.001, d = −0.58; Fig. 3b). Moreover, posterior pre-
dictive checks showed that the motive-based structure model 
qualitatively reproduced key features of participant data (Figs. 2a 
and 3c). These results suggest that the participants generalized 
learning across game types, with motives as a likely basis for such 
generalization.

To further test whether the participants used the four selected 
canonical motives to selectively generalize learning across games, 
we compared our motive feature set with 5,000 additional feature 
sets consisting of randomly generated pseudo-motives (achieved by 
shuffling the four canonical motive features as defined across the 
16 (S,T) ‘tiles’ in the game space). This approach can be thought 
of as densely sampling the space of possible bases for generaliza-
tion, which allowed us to test for evidence of motives we had not 
considered ourselves. Although the pseudo-motives could all selec-
tively generalize learning across games—the hallmark feature of 
our motive-based model—no combination of them accounted for 
the participant data as well as the motives-based structure model, 
which stipulated four canonical motives (Supplementary Results 
1). In fact, the randomization procedure recovered our theoreti-
cally guided set of motives, suggesting that these motives reflect 
the mental structure that participants use when generalizing to 
new contexts. Together with a number of model quality checks 
(Supplementary Results 2–4), these results support our hypothesis 
that participants rely on a feature-based reinforcement learning 
mechanism that leverages latent motives as a mental scaffold to gen-
eralize what they know about another person across social settings.

Complex mental models allow accurate predictions. Our observa-
tion of structure learning in a social prediction task poses an inter-
esting puzzle. On the one hand, it is likely that structure learning 
improves social prediction when facing a variety of latent motives in 
one’s social environment12,13. On the other hand, identifying a greater 
number of latent motives requires updating the predictive value of 
several motives at once, which means paying attention to many dif-
ferent task features that each inform different motives, such as the 
values of S and T. This poses a trade-off in which participants may 
consider only a subset of the four motives in their mental models of 
others’ behaviour. To test this, we again fit the motives model to the 
participants’ prediction data, this time comparing different model 
versions that each contained a unique subset of motives (that is, 
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only Co-operativeness, only Greed, Co-operativeness + Greed and 
so on). We then ran model comparisons at the subject level, again 
using the BIC as a criterion to reward model accuracy and penalize 
complexity (that is, the number of motives in a given model).

Confirming our hypothesis, we found that the predictions of all 
participants were best accounted for by a personalized model that 
specified only a subset of the four motives rather than by the full 
model containing all four motives (ΔBIC = −14.9 ± 10.5, W = 0, 
P < 0.001, d = −1.42; Fig. 3b). This was true even when compar-
ing model error without penalizing complexity (difference in sum 
of squared model error (SSE), −0.33 ± 0.63; W = 2,291; P < 0.001; 
d = −0.53). The most common motive subset (that is, the set of 
Co-operativeness and Greed) had greater average model error when 
fit to the entire group of participants than the full model with all four 
motives, although this difference was not statistically significant 
(Co-operativeness + Greed versus All Motives: ΔSSE = 0.42 ± 1.57, 
W = 4,613, P = 0.085, d = 0.27). This suggests that there was indi-
vidual variation in the motives that our participants considered in 
the Players.

The participants differed on the number of motives they con-
sidered: 30% of participants considered only a single motive, 50% 
considered two motives and 20% considered three motives simul-
taneously. Participants who built more complex mental models 
showed superior task performance but also spent more time mak-
ing their predictions (Supplementary Results 5), revealing a speed–
accuracy trade-off of structure learning.

Self-anchoring guides motive inference. The participants also dif-
fered in what motives they considered: 87% of participants consid-
ered Greed in their mental model, 51% considered Co-operativeness, 
31% considered EV and only 21% considered Risk Aversion. 
Accordingly, task performance was much higher when predicting 
the Greedy Player (average accuracy, 87.0% ± 12.9%) than when 
predicting the Risk-Averse Player (average accuracy, 56.3% ± 19.4%; 
two-tailed paired-samples t-test: t(149) = 14.7, P < 0.001, d = 3.17).

To test what drove these individual differences in motives con-
sidered, we compared participants’ best motive subset with their 
own decision strategy if they were to have played the game them-
selves (which participants reported during the task instructions). 
The Co-operativeness motive was more commonly considered in 
others by participants who reported their own decision strategy 
to be co-operative during the task instructions (one-tailed bino-
mial test, P = 0.010; Fig. 3d), and the same was true for the Risk 
Aversion motive in participants who had reported a risk-averse 
strategy (P < 0.001). Predicting the actions of a Player who shares 

the same strategy as oneself led to highly accurate predictions (that 
is, Greedy and Risk-Averse participants were on average 87.0% 
accurate on the corresponding task blocks). However, even though 
self-anchoring led to a boost in accuracy, the participants were still 
able to predict the actions of Players that had different strategies at 
69.4% accuracy on average, which is significantly better than guess-
ing (t(262) = 14.0, P < 0.001, d = 0.86). These self-anchoring effects 
suggest that our own motives help shape our constrained mental 
models of others’ behaviour, illuminating the role of informed pri-
ors in social structure learning.

Social structure learning facilitates attentional focus. Although 
participants with more extensive mental models were slower to 
make social predictions, this relative time cost decreased between 
early trials (1–8) and late trials (9–16) (Supplementary Results 5), 
reflecting the fact that structure learning involves gradually simpli-
fying complex decision problems to speed learning30. Specifically, it 
has been suggested that structure learning facilitates an attentional 
focus on information relevant to the (learned) latent structure of the 
task23,25. We tested this mechanistic hypothesis in study 2, where 50 
participants played the same game—behaviourally replicating the 
findings from study 1 (Supplementary Results 6)—only this time in 
the laboratory and while undergoing concurrent eye-tracking. We 
hypothesized that as participants learned the motives of the Player, 
they would focus their attention on the task features relevant to 
those specific motives, namely T for the Greedy Player and S for 
the Risk-Averse Player (Fig. 1c). Note that the payoff matrices look 
identical for all Player types. Therefore, any difference in attentional 
patterns for a given game between blocks must result from learning 
in previous trials in that block, providing evidence that structure 
learning guides attention.

Confirming our prediction, participants spent a greater per-
centage of the trial looking at T relative to S in the Greedy block 
than in the Risk-Averse block (two-tailed paired-samples t-test, 
t(49) = 5.11, P < 0.001, d = 0.73; Fig. 4a). To test whether this gaze 
difference developed as a function of structure learning, we split 
the Greedy and Risk-Averse blocks into four mini-blocks of four 
consecutive trials in which each game type was visited once, and 
we ran a mixed-effects regression with random subject intercepts 
to test whether Player strategy (Greedy/Risk-Averse) interacted 
with mini-block number to predict relative gaze (S versus T). The 
strategy–mini-block interaction was significant (F(1,347) = 16.9, 
P < 0.001), with the greatest shift in attention taking place in the 
first four to eight trials (Fig. 4b), confirming that the attentional 
shift between T and S was conditional on learning about the Players’ 
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strategies. This effect was also found at the subject level: participants 
who considered Risk-Aversion in their mental model spent more 
time looking at information relevant to a Risk-Averse Player (S) 
than participants who did not consider this motive (Supplementary 
Results 7 and Fig. 4b).

Furthermore, our eye-tracking data provide some insight into 
two theoretical claims. First, the fact that participants who shifted 
their gaze more to the diagnostic information (T for Greedy, S for 
Risk-Averse) also performed better at the task (Risk-Averse block, 
correlation between relative gaze to S versus T and accuracy: 
r(48) = 0.37, P = 0.008; ceiling effect in Greedy block with on average 
14 of 16 trials correct) suggests that structure-learning-based atten-
tional focus may support adaptive decision-making23,25. However, 
we cannot rule out the possibility that increasingly appropriate  

attention is an epiphenomenon of making correct choices, and 
other measurements during the decision process (for example, 
mouse-tracking) would be needed to tease this apart. Second, the 
gaze data support the validity of the feature-based reinforcement 
learning framework for social structure learning, as our compu-
tational model was able to predict gaze over time as a function of 
the participant’s beliefs about the Player’s motives (Supplementary 
Results 7 and Fig. 4c, which qualitatively validates our model).

Inferred motives are robust to different Player types. Having 
established that a motive-based structure learning model can 
account for participants’ predictions and eye movements in the 
Social Prediction Game, we aimed to test the generalizability of the 
model to different Player types. Specifically, since the participants  
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in study 1 as a function of Player strategy, S and T. Gr., Greedy; Ri.Av., Risk-Averse; I., Inverse. d, Self-anchoring in motive inference. This similarity matrix 
shows the relationship between participants’ own strategies (rows) and the motives they consider in the Players (columns). While Greed was considered 
by almost all participants, Co-operativeness (P = 0.010 in a binomial test) and Risk Aversion (P < 0.001) were considered more often by participants who 
had this motive as their own decision strategy (key tiles highlighted by black outlines).
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were clearly best at predicting the Greedy Player in study 1 (Fig. 
3c), we wanted to test whether high performance was also pos-
sible for other types of Players and whether our model could 
capture such performance. We therefore ran a third experiment 
(N = 148) using the Social Prediction Game, this time presenting 
the participants with all four Player strategies found in human 
choice data13, which we term Greedy, Risk-Averse, Co-operative 
(always co-operates) and Envious (co-operates only if it is guar-
anteed that one’s own payoff will be equal to or greater than the 
Opponent’s payoff). The results replicate our earlier observa-
tions while also validating our model (Supplementary Results 
8). First, even though each of the 16 trials in a block was unique, 
the participants achieved above-chance prediction overall (aver-
age accuracy, 73.7% ± 8.8% (s.d.); two-tailed one-sample t-test: 
t(147) = 32.8, P < 0.001, Cohen’s d = 2.70; Supplementary Fig. 
3a). Second, performance was above chance for each individual 
Player type (Co-operative: 88.7% ± 13.2%, t(147) = 35.8, P < 0.001, 
d = 2.95; Greedy: 85.0% ± 16.1%, t(147) = 26.4, P < 0.001, d = 2.18; 
Risk-Averse: 54.1% ± 18.2%, t(147) = 2.73, P = 0.007, d = 0.22; 
Envious: 67.2% ± 13.3%, t(147) = 15.8, P < 0.001, d = 1.30; 
Supplementary Fig. 3b), revealing that accuracy is not limited to 
the Greedy Player.

Structure learning supports adaptive social choice. In studies 1–3, 
we found that people use a structure learning system to infer the 
latent motives of others in order to predict which social decisions 
those others will make. People probably engage in social structure 
learning (despite the associated effort) because it enables them to 
strategically adapt their behaviour to what others will do. However, 
deploying strategic social behaviour requires a deep and flex-
ible understanding of the underlying latent structure of another’s 
motives, which can enable a person to generalize another’s motives 
to contexts that have never been experienced before.

To test this generalization effect in new situations, we carried 
out a fourth study in which the participants first played a block 
of the Social Prediction Game where the Player was programmed 
to be either Greedy or Risk-Averse. Afterwards, the participants 
played the Inspection Game39,40 in the role of the Employer, and the 
Player took the role of the Employee. In the Inspection Game, the 
Employee receives a wage from the Employer and chooses to either 
‘work’ (which creates revenue for the Employer but is costly for the 
Employee) or ‘shirk’. Because the Employee receives the wage regard-
less of whether he or she actually works, shirking has the higher 
payoff if it goes unnoticed. However, the Employer can choose to 
pay a cost to inspect the Employee and withhold the wage if the 
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Employee is found shirking. Given these rules, a Greedy Employee 
will always shirk to obtain the maximal payoff, while a Risk-Averse 
Employee will always work to avoid being caught shirking (Fig. 5a). 
Conversely, it is best for the Employer to pay for inspecting only 
if the Employee is likely to shirk. The natural mapping of motives 
in the Social Prediction Game to the Employee’s behaviours in the 
Inspection Game create a strong test for whether successful structure 
learning in one context is adaptively used to behave more strategi-
cally in an entirely different context. Moreover, because participants 
play the Inspection Game with no feedback and are thus not aware 
of whether their partner is shirking or working, we can test whether 
participants are exclusively using their knowledge from the Social 
Prediction Game to make their decisions in the Inspection Game. 
Because the cost of inspecting changes from trial to trial (using a 
staircase design; Methods), we were able to identify a participant’s 
indifference point for willingness to incur a cost to inspect. We pre-
dicted that successfully learning the motives of the Player during 
the Social Prediction Game should lead to paying more to inspect 
a Greedy Player than a Risk-Averse Player in the Inspection Game.

Confirming our hypothesis, the participants were will-
ing to pay an average of US$4.99 more to inspect the Greedy 
Player (US$20.10 ± US$8.83) than to inspect the Risk-Averse 
Player (US$15.11 ± US$8.75; within-subject two-tailed Wilcoxon 
signed-rank test: W = 2031.5, P < 0.001, d = 0.53; Fig. 5b). This reveals 
that participants were successful in detecting another’s latent motives 
in one context and generalizing this information to make more adap-
tive choices in new situations. Furthermore, a participant’s willing-
ness to pay was mediated by how well they inferred the motives in the 
Social Prediction Game. The better a participant performed in the 
Social Prediction Game, the more they paid to inspect Greedy rela-
tive to Risk-Averse Players (r(151) = 0.35, P < 0.001; Fig. 5c). These 
costly inspections paid off: the more participants distinguished 
between Greedy and Risk-Averse Employees in the Inspection Game, 
the more they earned as Employers (at a default inspection cost of 
US$15: r(151) = 0.72, P < 0.001). Finally, the more participants dis-
tinguished between Greedy and Risk-Averse in the Inspection Game, 
the more their self-reported inferences about the Players’ strategies in 
the Social Prediction Game reflected the true underlying motives of 
Greed and Risk Aversion (Supplementary Results 9), validating both 
the Social Prediction Game as a social motive inference task and our 
conceptual labels of ‘Greed’ and ‘Risk Aversion’.

Discussion
People routinely predict the behaviour of others across a dizzying 
array of social situations. We have shown that such sophisticated 

social prediction is achieved through structure learning: partici-
pants credit another person’s social choices to co-operate or defect to 
latent, unobservable motives (such as greed and risk aversion) and 
use this motive-based abstraction to successfully predict decisions 
in entirely new interactions with different social tensions. Through 
structure learning, participants were able to disregard irrelevant 
contextual cues and attend to information that was diagnostic of 
the other player’s future actions. Better use of structure learning led 
to more strategic behaviours in a subsequent competitive decision 
task with the same player, reflecting the adaptive value of accurate 
social prediction. Together, these findings provide a mechanistic 
and computational account of social prediction, illuminating how 
humans adaptively tackle a principal source of uncertainty in our 
social world41—other people.

This work establishes structure learning23,24,28,30 as a critical mech-
anism for successful social cognition. In our experiments, popular 
learning models that are often relied on in non-social contexts (such 
as basic reinforcement learning over choice options and naïve sta-
tistical learning) could not account for the selective generalization 
of social information exhibited by the participants. Instead, the 
participants stripped down the complexities of the social exchange, 
leaving only a few latent dimensions by which to generalize what 
they had learned to entirely new contexts. These inferred dimen-
sions differed across participants and were partly based on their 
own decision motives, which reveals a role for priors not found in 
non-social structure learning (for example, coloured shapes or frac-
tals)23,26,27. Social structure learning was captured by a feature-based 
reinforcement learning model, originally developed for tracking 
relevant stimulus features in non-social decision tasks23–25, which 
we adapted to learn over latent features of human social interac-
tions such as unobservable motives. This establishes feature-based 
reinforcement learning as a potential algorithmic implementation 
of structure learning in social cognition, complementing existing 
accounts using non-parametric Bayesian models19,42–44 and inverse 
reinforcement learning45,46. While posterior predictive checks from 
our modelling show that feature-based reinforcement learning pro-
vides a sufficient explanation of our data, we did not exhaustively 
explore the space of all possible models, and thus it is certainly pos-
sible that other algorithms (if equipped with appropriate motive 
representations) could do so as well. In line with the predictions of 
feature-based reinforcement learning23, response times were slower 
in early trials, when the participants were considering multiple 
motives as potential causes of the Player’s choices, and became faster 
as the participants homed in on a single motive and deployed selec-
tive attention to information relevant to that motive. This gradual 
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narrowing of attention allowed the participants to limit cognitive 
resources use while still achieving accurate social prediction. In 
this way, motive-based structure learning resembles efficient pro-
cessing in other cognitive domains, such as chunking in working 
memory47,48—a cognitive adaptation that leverages the inherent 
structure of the world.

This cognitive adaptation allows us to navigate our complex 
and evolving social environment by uncovering its latent struc-
ture, which is a better basis for generalization than simply attend-
ing to context cues or others’ actions. Consider a toy example of 
a resistance hero who never lies to her parents but during enemy 
occupation staunchly denies being part of the opposition to pro-
tect her family. A superficial bookkeeping of this person’s behav-
iour (she never lies) would fail to predict her actions in the novel 
context of war, while a deeper understanding of her latent motives 
(caring for her family) would facilitate accurate behavioural pre-
dictions. Similarly, in the Social Prediction Game, Greedy and 
Risk-Averse Players co-operated and defected equally often (50% of 
trials), and therefore generalizing only by their observable choices 
would yield identical (and highly uncertain) predictions in all new 
games. However, by abstracting and generalizing the Players’ latent 
motives from the combination of game incentives and choices 
made, our participants correctly predicted divergent behaviour in 
an entirely new context, the Inspection Game39,40. After successfully 
learning latent structure, the participants paid for inspections only 
when it was valuable to do so, thereby earning significantly more 
money. Moreover, making more accurate predictions in the Social 
Prediction Game led to more strategic inspection (and more money 
earned) in the Inspection Game. This intimates that many strategic 
socio-economic behaviours that rely on predictions about others’ 
future choices in novel contexts (such as competitive bargaining49, 
market entry50,51 and collective action2,32,52,53) are scaffolded by a 
motive-based structure learning mechanism. Given that social 
motives (for example, greed) vary between individuals in the popu-
lation10,12–14,54, effective inference of these motives in others is prob-
ably instrumental in achieving competitive and collaborative goals.

How do people construct and apply abstracted mental models 
of others’ motives? Our data suggest that attention plays a key role 
in this process. Attention is a fundamental cognitive mechanism, 
as it affords optimal access to behaviourally relevant information 
with limited processing capacity55. Our findings show how structure 
learning guides attention and suggest that attention, in turn, sup-
ports accurate social prediction. In the Social Prediction Game, as 
in everyday social interactions, there were multiple cues that could 
be predictive of another’s behaviour, from the Player payoffs S and T 
to the order of the games or even the initials of the Player. Structure 
learning allowed the participants to disregard superficial cues 
and attend to information relevant to the Players’ latent motives. 
Conceptually, this process of attentional honing may facilitate accu-
rate social prediction with limited effort if the inferred motives are 
correct, but incorrect structure learning may cause counterproduc-
tive attention to irrelevant information. In our experiment, partici-
pants who did not consider risk aversion also failed to shift their 
attention to S during the Risk-Averse block and instead kept looking 
at T, thereby missing out on information predictive of the Player’s 
choices. This suggests that what we can learn about other people is 
limited by our expectations. Our mental models of others effectively 
constrain what we pay attention to, causing blind spots that prevent 
us from properly updating our beliefs and potentially contributing 
to stereotyping56,57 and confirmation bias58.

Our findings have implications for understanding these social 
behaviours in the real world. For example, police officers may dis-
proportionally target racial minorities59 because of a bias in informa-
tion search, where inaccurate mental models of minorities’ motives 
cause police officers to misinterpret behaviour or ignore exoner-
ating information. Future work can directly test such hypotheses, 

using our tasks and model to disentangle the complementary roles 
of prior beliefs, information search and structure learning in social 
prediction. The current work thus provides new avenues for under-
standing failures of social prediction observed in everyday life.

Methods
Study 1 procedure. All studies in this paper were approved by the Brown 
University Institutional Review Board. In study 1, 150 participants (95 males, 
52 females, 3 no response; mean age, 35.4 ± 10.0 yr) participated via Amazon 
Mechanical Turk (MTurk) in exchange for monetary compensation. The sample 
size was chosen such that key effects from smaller pilot studies could be observed 
with high statistical power. All participants gave written informed consent before 
starting the experiment. The task was written in Javascript and made accessible 
using Psiturk v.2.3.0 (ref. 60). The participants first read the instructions and were 
quizzed to ensure their understanding and filter out potential bots. The participants 
were then asked to indicate for each game type in the Social Prediction Game how 
they themselves would choose, from which we estimated the participants’ own 
decision strategies. They then completed the Social Prediction Game.

Task. The participants played four blocks of the Social Prediction Game, each 
block with a different Player, and were tasked with predicting the choices of this 
particular Player across 16 consecutive economic games. The Players always played 
single-shot against anonymous Opponents. Each game was presented as a 2 × 2 
payoff matrix (Fig. 1a) where the Player and Opponent each have two choices: 
co-operation and defection. In the task, these choices were labelled by arbitrary 
colour words (such as blue or green) whose mapping to co-operation and defection 
changed on every task block.

The games varied on two features central to social interactions: risk of 
co-operating (here operationalized as S) and T (Fig. 1b). At T < 10 and S > 5, the 
games fall under a class of Harmony Game, where each player’s payoff-maximizing 
action aligns with the jointly payoff-maximizing action, and thus no conflict 
arises except through potential envy61. At T > 10 and S > 5, the games are 
classified as Snowdrift Games (also known as Volunteer’s Dilemmas), which 
are anti-coordination games where unilateral defection is preferable to mutual 
co-operation, but mutual defection yields the smallest payoff for all62. At T > 10 and 
S < 5 lie the Prisoner’s Dilemma games, which are characterized by a high value 
of T even if one’s opponent defects as well, and co-operation is risky as unilateral 
co-operation yields the lowest possible payoff33. At T < 10 and S < 5, the games are 
Stag Hunts, in which mutual co-operation yields the highest payoff for both, but 
co-operation is risky as unilateral co-operation is met with the lowest payoff63.

The task of the participants was to indicate, in each trial, what they believed the 
Player would choose to do in the current game, and to rate their confidence in this 
prediction on an 11-point scale from 0% to 100% (10% increments). They received 
feedback on every trial indicating whether their prediction was correct or not, and 
earned a US$0.01 bonus for every correct trial. At the end of 16 trials (one block), 
the participants self-reported what they believed the Player’s strategy was using a 
free-response answer box. After four blocks, the total earned bonus was presented 
to the participants and added to the base payment. The participants were then 
taken to a survey hosted on Qualtrics to finish the experiment.

Model feature sets. We built three versions of our computational model with 
different types of features that each reflect a different psychological model about 
how participants might carve up the 4 × 4 game space to generalize information 
across trials.

Model 1 (motive-based structure) learns over four features representing 
psychological motives that span the entire game space. This reflects the hypothesis 
that participants realize that the Player’s behaviour across all games is driven by 
overarching motives, which is used to generalize learning across games to improve 
predictions. Model 1 can support sophisticated generalization across the game 
space whereby co-operation in one game type predicts defection in another—a 
common pattern in human choices caused by the fact that consistently adhering 
to one motive can lead to different choices in different games13,32. As features in 
this model, we included four motives whose influence on behaviour in economic 
games is well-documented: Co-operativeness, Greed, Risk Aversion and EV (Fig. 
3a). The Co-operativeness motive always chooses to co-operate and is based on 
common social norms that prescribe such behaviour34. Greed chooses the maximal 
payoff that can be obtained5. Risk Aversion chooses to maximize the minimal 
payoff35 (optimizing the worst-case outcome). The EV motive follows a simplified 
and risk-neutral model of rational choice under uncertainty36,64 that optimizes over 
the average of the two possible outcomes associated with a co-operate or defect 
decision, thus co-operating if (10 + S) > (5 + T). The Greed, Risk Aversion and 
EV motives can all be understood as maximizing expected utility under different 
assumptions about the Opponent’s choice: Greed maximizes expected utility if one 
believes that the Opponent will surely co-operate (sometimes termed optimism13), 
Risk Aversion maximizes expected utility assuming the Opponent will defect 
(pessimism) and EV maximizes expected utility under complete uncertainty 
(50% probability each) about the Opponent’s choice. Note that the model does 
not assume that these motives drive the participant’s own choices, but rather 
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that the participant might consider these motives as drivers of the other Player’s 
decisions. To ensure that no other hypothetical patterns of choices across games 
were inferred by our participants (motives or otherwise), we compared these four 
canonical motives with 5,000 randomly generated pseudo-motives, which provides 
a conservative test of model specificity (Supplementary Results 1).

Model 2 (no structure) learns over 17 features: one for each unique (S,T) 
combination and one ‘intercept’ feature that spans the entire game space. It can 
thus generalize information across all games equally and treat each game as 
unique, but it cannot selectively generalize within a subset of games. It reflects the 
hypothesis that participants generalize learning about a Player only in the coarsest 
way possible—across all games equally—without realizing how several different 
games might elicit the same, or different, decisions from a Player.

Model 3 (game-type-based structure) learns over five features: one for each 
game type (that is, each quadrant in the game space) and one intercept. This model 
reflects the hypothesis that participants recognize that behaviour is consistent 
within a game type (for example, Stag Hunt) and thus benefit from grouping 
learning experiences by game type. Since Player behaviour is fully consistent within 
each game type (except for the Envious strategy in study 3), this strategy could be 
very successful in the current task. However, this model cannot generalize between 
game types.

In each of our three candidate models, predictions for the Player’s choice are 
made on the basis of the weighted average predictions of each included model 
feature (that is, motives, games and game types, respectively):

Vco-operate =
k

∑

i=1
wifi (S, T) (1)

where fi(S,T) is the feature’s prediction at the current S and T values, expressed 
as 1 for co-operate and −1 for defect; wi is the associated feature weight; i is the 
feature number; k is the total number of features, and Vco-operate is the value of 
predicting ‘co-operate’. We then apply a softmax decision rule to produce the model 
prediction:

Pco-operate =
eβVco-operate

1 + eβVco-operate (2)

where β is the inverse temperature parameter of the softmax function and Pco-operate 
represents the likelihood that the Player will co-operate given the current state of 
the model. During learning, the Player’s actual choice is compared with the model’s 
prediction to compute a prediction error, PE:

PE = Choice − Pco-operate (3)

Where Choice is 1 if the Player co-operated and 0 if the Player defected. The 
prediction error is therefore ≥0 if the Player co-operated and ≤0 if the Player 
defected. This sign difference is used in the next step, where each feature weight wi 
is updated on the basis of the prediction error, the learning rate α and the direction 
of the prediction, for all i from 1 to k:

wi,t+1 = wi,t + α × PE × fi(S, T) (4)

where fi(S,T), as before, is 1 for co-operate and −1 for defect. Combining this sign 
with the sign of the prediction error allows the model to increase a feature weight 
if the prediction of the associated feature was correct (that is, fi = 1 and PE > 0 
or fi = −1 and PE < 0), and conversely to decrease the weight if the feature was 
incorrect (when fi and PE have opposite signs).

Model fitting. The feature weights are reset to their a priori values at the start of 
each task block (that is, predicting each new Player). These prior weights are free 
parameters that are determined when fitting the model to each participant’s data, 
along with the learning rate α and the softmax inverse temperature β. Model 1 thus 
has 6 free parameters (4 feature weights, α and β), Model 2 has 19 and Model 3 has 
7.

To fit the free parameters, we defined the objective function as the sum of 
squared errors between the model prediction and the participant’s prediction 
weighted by confidence. Confidence-weighted predictions x are computed as 
follows:

x =

{ 1+confidence
2 , co-operate

1−confidence
2 , defect

(5)

For example, if the participant rated 70% confidence that the Player would 
defect, the confidence-weighted prediction is (1 − 0.7)/2 = 0.15. To compute 
the sum of squared error of the model, we compared the confidence-weighted 
prediction with the model prediction:

SSE =

n
∑

t=1

(

x − Pco-operate
)2 (6)

where t indicates trial, n indicates the total number of trials (64 in study 1, 128 in 
study 2) and SSE indicates the sum of squared model error. We used the Matlab 
function fmincon to find the parameter combination that minimizes SSE. Finally, 
we computed the BIC to penalize model fit by model complexity (that is, the 
number of free parameters), using the assumption that model error was normally 
distributed:

LL =

n
∑

t=1
log 1

σ
√

2π
e
−(x−Pco-operate)2

2σ2 (7)

BIC = −2LL + (k + 2) × log n (8)

where σ is the standard deviation of the model errors x − Pco-operate, k is the number of 
feature weights in the model (k + 2 thus represents the number of free parameters), 
n is the number of observations (trials) and LL refers to log-likelihood. The BIC 
is an appropriate choice of model selection metric, as it allowed for reliable model 
selection in synthetic data (Supplementary Results 1).

Study 2 procedure. Fifty participants (12 males and 38 females; mean age, 
22.2 ± 7.3 yr) played eight blocks of the Social Prediction Game in the laboratory 
while undergoing concurrent eye-tracking. The participants were paid for 
participation. The sample size was determined by finding the smallest subsets of 
data from study 1 in which all important effects could be reliably observed. All 
participants gave written informed consent before the start of the experiment. 
Each participant played two blocks with each Player strategy (Greedy, Risk-Averse 
and so on) in pseudorandom order such that each Player type occurred once in 
the first four blocks and once in the second four blocks. Each Player was labelled 
with a unique set of initials, regardless of strategy. The participants took a break 
between blocks 4 and 5. The task was generated using the Psychophysics Toolbox 
for Matlab. Otherwise, the task and computational model used in study 2 were 
identical to those in study 1.

Eye-tracking. Eye-tracking data were collected using a SensoMotoric Instruments 
iView X RED. The participants were seated comfortably and upright in a 
straight-backed chair 50–70 cm from the screen and were instructed to move 
as little as possible. The Social Prediction Game was preceded by a proprietary 
SensoMotoric Instruments eye-tracker calibration and validation procedure in 
Matlab, which was repeated if necessary until the deviation in visual angle between 
the validation target and the recorded gaze fixation was below two degrees. The 
average deviation after calibration (x, y) was (0.65°, 0.86°) for the left eye and 
(0.74°, 0.88°) for the right eye. The calibration and validation procedures were 
repeated after the break before task block 5.

The gaze data were preprocessed by converting the raw data to fixations 
by grouping data points on the basis of spatial and temporal distance using 
SensoMotoric Instruments software with the default settings. Next, all fixations 
outside of the bounding box of the rectangular payoff matrix on the screen were 
excluded. Circular regions of interest (ROIs) were then defined with 100-pixel 
radii around the centre of each of the eight numbers in the payoff matrix. We then 
computed the relative gaze to each ROI by dividing the summed fixation duration 
in that ROI by the total fixation duration in the entire payoff matrix. We computed 
relative gaze to each ROI per eye and then averaged over the two eyes to obtain 
the overall relative gaze to each ROI. For the S − T difference scores, we subtracted 
relative gaze to T (summed over both T ROIs on the screen) from relative gaze to S 
(summed over both S ROIs).

Study 3 procedure. A total of 153 participants gave written informed consent 
before starting the experiment and participated on MTurk in exchange for 
monetary compensation. The sample size was intended to equal that of study 1. 
Since 5 participants did not complete the debriefing survey, only 148 participants 
were included in the analysis (90 males, 58 females; mean age, 36.9 ± 9.7 yr). The 
participants played the same Social Prediction Game as in study 1, except that 
there were now four Player types: Co-operative (always co-operates), Greedy 
(as in study 1), Risk-Averse (as in study 1) and Envious (only co-operates if own 
payoff ≥ other’s payoff—that is, only in (S,T) pairs (7,5), (10,5) and (10,8)).

Study 4 procedure. A total of 153 participants (92 males, 61 females; mean age, 
37.6 ± 10.4 yr) gave written informed consent before starting the experiment and 
participated on MTurk in exchange for monetary compensation. The sample size 
was intended to equal that of study 1. The participants first played one block of the 
Social Prediction Game and then played a block of the Inspection Game, with the 
same Player. The participants then played another block of the Social Prediction 
Game and the Inspection Game with a different Player. For both Players, they 
could thus use what they had learned about that specific Player in the Social 
Prediction Game to improve their decision-making in the Inspection Game. 
Critically, the Inspection Game is structurally distinct from all games included in 
studies 1–3 in that it is not symmetric (for example, mutual co-operation yields 
unequal payoffs). Moreover, whereas our participants only observed other Players 
in the Social Prediction Game, they actively participated in the Inspection Game, 
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and their monetary reward was yoked to this game’s outcomes. The Inspection 
Game is thus a strong test for selective generalization of learned information about 
the Player to a novel task.

The two Players were programmed as either Greedy or Risk-Averse in random 
order. These two strategies were identical to those in studies 1 and 2 for the Social 
Prediction Game. For the Inspection Game, the Greedy Player always shirks, 
and the Risk-Averse Player always works. Since there was no feedback during 
the Inspection Game, decision-making was driven solely by what the participant 
had learned during the Social Prediction Game. On each round of the Inspection 
Game, the participant could earn money from a base pay of US$30 and the revenue 
generated by a working Employee (but not a shirking one), diminished by the wage 
paid to the Employee and the cost of an inspection (only if chosen). The Inspection 
Game therefore provides an incentive for the Employer to inspect in order to avoid 
paying a wage unnecessarily, but only if the Employee is shirking. The participant’s 
earnings in one randomly selected round of the Inspection Game were paid out as 
a bonus with US$1 in the game converted to US$0.01 for the participant.

At the start of each Inspection Game block, the participant self-reported how 
likely they believed it was that the current Player (indicated by initials) would be 
working in the Inspection Game. The participants rated the Greedy Player at 41.3% 
likely to work and the Risk-Averse Player at 54.8%, demonstrating that inferences 
about others’ motives were explicitly available. During the Inspection Game, a 
staircase procedure determined the participant’s willingness to pay for inspection 
in the current round by raising the cost of inspecting if the participant had chosen 
to inspect in the previous trial and lowering it if the participant had chosen not 
to inspect. The willingness to pay (that is, the indifference point) was computed 
by averaging the cost of inspecting across the last 5 of the 15 trials of the staircase 
procedure. Additionally, at the end of each Inspection Game block, the participant 
self-reported how much they would be willing to pay for inspection (between US$0 
and US$30).

Software and code availability. Low-level behavioural data analysis (for example, 
computing averages and running t-tests and one-way F-tests) was carried out in 
Python v.3.7.4 using the packages Numpy v.1.17.2 (ref. 65), Pandas v.0.25.1 (ref. 66) 
and Scipy v.1.3.1 (ref. 67). The figures were created using Matplotlib v.3.1.1 (ref. 68), 
Seaborn v.0.9.0 (ref. 69), and WordCloud v.1.8.1 (ref. 70) for Python. Mixed-effects 
regressions were carried out in R using the packages lme4 v.1.1–21 (ref. 71) and 
lmerTest v.3.1–1 (ref. 72). Computational modelling was performed in Matlab 
R2019b using the fmincon function from the Optimization Toolbox and custom 
code.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The behavioural data analysed in this paper are available at https://github.com/
jeroenvanbaar/NHB_motives_structure.

Code availability
The analysis code for this paper is available at https://github.com/jeroenvanbaar/
NHB_motives_structure.
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