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A probabilistic map of emotional experiences
during competitive social interactions
Joseph Heffner 1 & Oriel FeldmanHall 1,2✉

Theories of emotion and decision-making argue that negative, high arousing emotions—such

as anger—motivate competitive social choice (e.g., punishing and defecting). However, given

the long-standing challenge of quantifying emotion and the narrow framework in which

emotion is traditionally examined, it remains unclear which emotions are actually associated

with motivating these types of choices. To address this gap, we combine machine learning

algorithms with a measure of affect that is agnostic to any specific emotion label. The result is

a probabilistic map of emotion that is used to classify the specific emotions experienced by

participants in a variety of social interactions (Ultimatum Game, Prisoner’s Dilemma, and

Public Goods Game). Our results reveal that punitive and uncooperative choices are linked to

a diverse array of negative, neutrally arousing emotions, such as sadness and disappointment,

while only weakly linked to anger. These findings stand in contrast to the commonly held

assumption that anger drives decisions to punish, defect, and freeride—thus, offering new

insight into the role of emotion in motiving social choice.
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A lthough early models of decision-making largely ignored
the influence of emotion1, the last few decades have
detailed the central role emotions play in guiding

choices2–5. Emotions are particularly important for social
cognition6–8, where they are known to potently shape the deci-
sions made during interactions with other people9–11. The cou-
pling between emotion and social choice is perhaps most well-
documented by research examining behaviors in competitive
contexts, such as defecting during cooperative games and pun-
ishing norm transgressors. There is evidence that negatively
arousing emotions—such as anger—act as the proximate
mechanism motivating punishment12–17. For example, when
reading about a moral violation18–20 or receiving an unfair offer
in an economic exchange21, anger seems to scale with willingness
to punish the transgressor. Physiological and neural data corro-
borate this account. Enhanced physiological arousal (i.e., skin
conductance and pupil dilation) is observed when punishing
those who behave unfairly and defecting after experiencing
unreciprocated cooperation22–24. This heightened negative
arousal is often taken as a proxy for anger25,26, a narrative which
has also been applied to the coupling between increased neural
activity and decisions to punish and defect27–29. Although less
prevalent, there is some evidence that other emotions such as
sadness30,31, disgust15, and disappointment32–36 also contribute
to noncooperative behaviors. Taken together, the prevailing
account is that strong, negatively arousing emotions play a critical
role in discouraging prosocial decisions to reciprocate, cooperate,
or help others31,37.

However, the long-standing challenge of precisely quantifying
nebulous emotional experiences38,39 and the nature in which
emotion is traditionally probed, leaves open the possibility that
other emotions which do not neatly fit into this emotional tax-
onomy, might also shape social decision-making. For instance,
interrogating how much anger a person feels in response to unfair
treatment may artificially impose an expectation that the person
ought to feel anger40. These types of directed probes also con-
strain the emotional experiences to a limited set chosen by the
experimenter, often without allowing participants the option to
report other emotional experiences. Moreover, attributing specific
emotional states to increased physiological and neural activity
may falsely lead to mis-identifying the emotion actually
experienced41. Therefore, although emotion is often invoked as
the lynchpin of motivated social decision-making5,42, it remains
unclear which emotions drive competitive decisions to punish
and defect, and which emotions govern cooperative decisions to
collaborate and reciprocate.

To circumvent these issues and precisely characterize the
relationship between emotion and social choice, we developed a
technique for understanding emotional experiences that com-
bines participants’ affective ratings of specific emotions with the
affective experiences generated during social interactions. By
leveraging both supervised and unsupervised learning algorithms
trained to classify emotions, we let our data-driven framework
reveal the nature of this relationship, effectively reverse engi-
neering the emotions experienced during social interactions. This
agnostic, unbiased approach identifies which specific emotional
experiences are associated with competitive and cooperative
choices, including punishment of a norm transgressor, defection
after experiencing unreciprocated cooperation, and free riding at
the expense of the common good.

In three experiments (N= 1491), we embed a mathematically
tractable measurement of emotion into a series of economic
games: The Ultimatum Game (Experiment 1), the Prisoner’s
Dilemma (Experiment 2), and a Public Goods Game (Experiment
3). This emotion measure partitions emotional experiences into a
broad two-dimensional affect space of valence (pleasurableness,

x-axis) and arousal (activation/intensity, y-axis)43, parameterized
by a 500 × 500 pixel grid (Fig. 1A). In our modified games, par-
ticipants play as the second mover, reporting on this affect grid
how they feel about the choices of the other player(s) (Fig. 1B).
For example, if their partner proposes a highly unfair offer and
the participant feels extremely negatively aroused, they could
move their cursor to the upper left corner of the grid, demar-
cating their affective experience at a specific [x, y] location
(participants were never asked to self-report a discrete emotion
label during any of the economic games). Participants then
respond by deciding to punish, defect, or free ride—depending on
the game. Critically, before playing the economic game, all par-
ticipants completed an emotion classification task in which they
used their memory and prior knowledge44 to place 20 labeled
emotion terms (angry, surprised, happy, etc.) within the affect
grid, such that each emotion is associated with a specific [x, y]
coordinate (Fig. 1A). These [x, y] ratings of the labeled emotion
terms are then used to train machine learning models to generate
a representation of the group’s “emotion map” within the affect
grid space, which enable the model to predict which labeled
emotion terms are most likely to be associated with a participant’s
unlabeled, affective experiences reported during the economic
games.

To identify which specific emotions are associated with choi-
ces to punish, defect, and free ride, we trained three supervised
machine learning classification algorithms (a neural network,
k-nearest neighbors algorithm, and a support vector machine;
Fig. 2), and one unsupervised algorithm (k-means clustering) on
the valence and arousal ratings (i.e., [x, y] coordinates) provided
by participants during the emotion classification task. Supervised
models are evaluated on their cross-validation accuracy (see
Methods), and once trained, the output of these models is the
probability associated with an emotion’s location in the affect
grid at the population level (Fig. 2). Both the neural network
(NN) and k-nearest neighbors (kNN) achieved high overall
testing accuracy (NN: 35.80% and kNN: 35.97%, compared to
null accuracy of 5%), while the SVM was a poor classifier
(19.90%). While we chose the neural network model as our final
model, results are comparable across NN and kNN. We applied
the trained NN model to the unlabeled affective experiences
reported during the economic games to infer an unbiased,
participant-driven estimate of what emotion the person was
likely feeling during the social interaction, without constraining
participants’ experiences (Fig. 1C).

Results
The emotions associated with decisions to punish. Participants
(N= 715) played a modified Ultimatum Game (UG), where the
Proposer splits a sum of money with the participant, who can
then decide to accept the offer, in which case the money is split as
proposed, or reject the offer, in which case neither player receives
any money (a classic form of costly punishment). Offers <20% of
the total pie are typically rejected about half the time, which
punishes the transgressor for behaving unfairly45. In our version,
participants played as the Responder (or a third party, see
Methods), and reported how they felt about the Proposer’s offer
on the affect grid before deciding to accept or reject. Before
playing in the UG, participants rated 20 feeling terms in the
emotion classification task. To gain insight into the emotions
experienced during the UG, we combined the emotion classifi-
cation data with the affect ratings made in all three experiments
using machine learning algorithms. To accomplish this, we split
the emotion classification data into a training (70%) and testing
set (30%), and trained a feed-forward neural network (NN) on
the training data. We used cross-validation to optimize the size of
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a single-hidden layer to prevent overfitting (see Methods). The
testing set was used to validate the accuracy of the NN model by
comparing the NN predicted emotion classifications, to the real
emotion labels in the test data (NN achieved 35.80% accuracy,
compared to a null accuracy of 5%). The resulting cross-validated
NN model was applied to the unlabeled affective experiences
reported in response to the Proposer’s offer. Each affect rating
was given a probability (or likelihood) of being classified as one of
the 20 discrete labeled emotion terms (where all probabilities add
up to 1). Because each affect rating was associated with a choice to
accept or reject, results were averaged within participants and
then across choices to gain insight into which emotions are linked
to decisions to punish.

The 2D structure of emotion. Results from the emotion classi-
fication task reveal at the population level how emotions are
organized in the two-dimensional valence-arousal space. For
example, the contour plots of the 2D density distributions for the
emotion anger reveals a tight, densely centered set of responses
that fall in the high arousal, unpleasant grid space, an experience
that might be described as “rage” (Fig. 2A). There is also, how-
ever, a small dense cluster of responses that are neutrally arousing
and highly unpleasant, an experience probably more akin to
‘quiet anger’. These two distinct clusters of responses suggest that

at the population level, there is a qualitative difference in the
emotional experience labeled anger. Other emotions, such as
disappointment, appear to have greater heterogeneity, reflected by
responses spanning a greater swath of the affect grid, especially
along the arousal dimension. This suggests that there is no single
common emotional experience that neatly describes the emotion
called disappointment, and even basic emotions such as anger
appear to have affective variability (Fig. 2B). The heterogeneity in
the structure of emotions can be tested by quantifying the dis-
tribution (e.g., standard deviation or interquartile range)46,47 and
comparing the variance of each emotion48. For example, many
negative emotions (i.e., afraid, angry, annoyed, disgust, dis-
appointment, and sadness) have comparable variances along the
valence dimension, but most emotions’ variances differ along the
arousal dimension (see Supplementary Fig. 3). The distributions
themselves can also be formally compared by determining whe-
ther a specific distribution is unimodal (e.g., Hartigan’s dip
statistic)49,50—which, depending on the peaked-ness of the dis-
tribution, might suggest a common emotional experience at the
population level, or multimodal—which would suggest greater
heterogeneity at the population level (see Supplementary
Tables 1, 2). Together, these techniques help to reveal the
structure of emotion and offer insight into the heterogeneity of
the human emotional experience.

Fig. 1 Task design. A Emotion classification task schematic. Participants rated a variety of feeling labels using the arousal (vertical) and valence
(horizontal) axes on a 500 × 500 pixel grid. The feeling labels for the emotion classification task are listed. B Economic game schematic. In a second task,
participants played as the second mover in a dyad or group setting, deciding whether to punish a norm transgressor (UG) or defect in a cooperation game
with one (PD) or three (PGG) partners. Here we provide a schematic of Experiment 1: The Ultimatum Game. Participants are paired with a partner, receive
an offer, rate how they felt about that offer, and choose to accept or reject the offer. C Machine learning approach. Emotion classification ratings (colors
correspond to emotion classification task words) were used to train a feed-forward neural network, shown in a simplified schematic predicting two emotion
classes (see Methods). After cross-validation, the trained neutral network was applied to the unlabeled emotion experiences in the Ultimatum Game.
Ultimatum Game data is color coded by the choice to accept (blue) or reject (red).
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Sadness and disappointment are associated with punishment.
The neural network trained on the emotion classification data
predicts the likelihood a given emotion is experienced after
receiving an offer in the UG. Contrary to popular emotion-
punishment theories, our results reveal that the top three emotions
associated with decisions to punish are sadness (13.47%), dis-
appointment (12.82%), and disgust (12.54%), with anger (10.28%)
identified as the 5th most likely emotion to be experienced after
receiving an offer (Fig. 3A). Paired t tests reveal, sadness (t
(558)= 4.65, p < 0.001, d= 0.20), disappointment t (558)= 4.06,
p < 0.001, d= 0.17, and disgust (t (558)= 5.52, p < 0.001, d= 0.23)
are all significantly more likely to be associated with punishing
compared to anger. When accepting the offer, the top three emo-
tions most likely to be experienced are satisfied, happy, and peppy
(Fig. 4A). To assess the degree to which a given emotion is spe-
cifically associated with a decision to punish compared to accept,
we can contrast the model likelihoods for each choice (e.g., a delta
measure computing the likelihood of feeling anger when punishing
—likelihood of feeling anger when accepting). Higher values indi-
cate that an emotion has a stronger association with punishment,
and lower values indicate that an emotion has a stronger associa-
tion with acceptance (Fig. 4B). Emotions such as sadness, disgust,
anger and disappointment were all more intimately linked to
decisions to punish, compared to when deciding to accept.

Negatively valenced, high arousal emotions less likely to pre-
dict punishment. To test the more general notion that emotions
which are negatively valenced and highly arousing are commonly
linked to punishment14,28, we used an unsupervised machine
learning approach called k-means clustering. The k-means proce-
dure ignores the emotion labels from the emotion classification task
and partitions the emotion space into nine equally sized clusters
(we chose k= 9 because it forms a three-by-three checkered
emotion space; Fig. 5A). These nine clusters are roughly equivalent
to delineating all possible combinations of low, medium, and high

levels of arousal and valence. The objective of the k-means algo-
rithm is simple: While ignoring actual emotion labels, take the
population-level responses from the emotion classification task to
discover any underlying patterns for how the group represents each
emotion (see Methods). This approach allows anger-punishment
theories a fighting chance by interrogating—in an even more
unbiased approach—the hypothesis that negatively valenced, highly
arousing emotions (such as, anger) predict decisions to punish.

Results show that cluster 3, which corresponds to high negative
valence and neutral arousal, was the most frequent affective
experience associated with decisions to punish—almost twice as
frequent ðχ2 1ð Þ ¼ 249:68; p < 0:001Þ as the next predictive cluster
(cluster 1: high negative valence and high arousal; Fig. 4B: note
that the proportion of punish and accept choices which naturally
fall into these clusters are not uniform and as such, the base rates
of punishment in each cluster differ, e.g., out of all choices to
punish, 11.5% fall within Cluster 3 while only 3.44% fall within
Cluster 1; see Supplementary Fig. 7). Examining which emotions
fall into cluster 3 reveals disappointment as the most representa-
tive emotion term, whereas anger is most representative of cluster
1 (Fig. 4A). When deciding to accept the offer, cluster 5 (neutral
valence and arousal; represented by the emotion term neutral)
was almost twice as likely χ2 1ð Þ ¼ 520:22; p < 0:001

� �
as cluster 2

(neutral arousal and positive valence; represented by the emotion
term satisfied). Given that we still find that the affect cluster
associated with anger (cluster 1) is not representative of decisions
to punish (even when accounting for base rates) suggests that our
results cannot simply be explained by how people interpret
specific emotion terms. Instead, these results provide converging
evidence that negative valence and high arousal affective states are
not the predominate motivator of punishment.

Highly unfair offers increase coupling between negatively
valenced, neutrally arousing emotions and punishment. Being
treated unfairly is a strong and consistent predictor of decisions to

Fig. 2 Machine learning approaches. A Supervised machine learning. Three supervised machine learning algorithms were used to train a classifier on all
20 emotions from the emotion classification data. Simplified schematics for each approach are shown demonstrating how the model classifies toy data as
either “happy” or “peppy”. Model-specific parameters were optimized using tenfold cross-validation on the training dataset. B Model view. Graphs show
most likely emotion class for each valence-arousal location which visualizes one model’s view of the emotion space. C Neural network emotion
classifications. Visualizes the probability of each emotion label classification for the emotion space, with darker colors indicating higher probability.
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Fig. 3 Emotion classification plots. A Two-dimensional density plots of where participants (N= 1491) placed each emotion term in the emotion
classification task. The x-axis represents valence and the y-axis represents arousal. Contour lines illustrate different levels of density at the population level,
see Supplementary Information for more detailed visualizations. B One-dimensional density plots illustrating the ratings of emotion terms in the emotion
classification task, plotted separately for valence and arousal.

Fig. 4 Neural network emotion classifications. A Classifications by decisions to accept and punish. The neural network model trained on the emotion
classification data is applied to the unlabeled emotion ratings from the Ultimatum Game. Each data point is assigned a probability of each emotion class
and model likelihoods are averaged within participant (N= 715) and then across choice. Bars represent mean values while error bars reflect 95% CIs.
B Difference in probability of choice given an emotion. Model likelihoods are averaged within participants, then across choices to reveal which emotions are
more likely to be associated with decisions to accept and punish. For example, the emotion sad is more specific to decisions to punish than accept, whereas
the emotion sleepy is equally associated with both choices.
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punish, especially in the UG51. The association between unfairness
and punishment provides an additional, strong test of which
specific emotional experiences evoked by being treated unfairly
leads to punishing. Using the emotion classification likelihoods
derived from the neural network, we calculated the average
probability of each emotion class at every level of unfairness, given
a decision to punish or accept the offer. As offers become more
unfair, people experience more negative emotions including sad-
ness, disgust, disappointment, and anger (Fig. 6). The model
identified disappointment as the most likely emotion for most
offer types. Only after experiencing the most unfair offer (5% of
the total pie), does anger become the top emotion linked to
punishment, followed by sadness and disgust (paired sample t test

comparing anger with sadness t (537)= 0.03, p= 0.98, d= 0.001)
and disgust (t (537)= 0.59, p= 0.55, d= 0.03).

Individual-specific emotion representations. While the machine
learning approach combines the data across all participants to
classify affective experiences as a population-level estimate, we
can also tailor our analysis to each individual’s unique affective
experience. To do this, we directly tied a participant’s specific
emotion classification responses to their reported affective
experiences in the UG, which creates an individual-level estimate.
For example, if a particular participant rates anger as being a
negative, low arousal state (i.e., a “quiet” anger), then this analysis

Fig. 5 k-means clustering approach. A k-means cluster schematic and interpretation. We specified the k-means algorithm to identify nine clusters which
roughly forms a three-by-three grid varying in low, medium, and high valence and arousal. Each cluster is numbered and the frequency of the modal
emotion for each cluster is shown to illustrate each space of the emotion grid. B Classifications by decisions to accept and punish. The k-means cluster
model was applied to the unlabeled emotion ratings from the Ultimatum Game. Each data point is categorized by a single cluster and the frequency of each
cluster is shown for accept and punish decisions.

Fig. 6 Neural network classifications across unfairness levels. Unfairness indexes the amount of money kept by the Proposer (out of $1) and ranges from
fair ($0.50, $0.50) to highly unfair offers ($0.95, $0.05). The proportion refers to the model likelihood of each emotion class within participants (N= 715),
and then across choice (accept or punish) and each unfairness level.
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would be sensitive to that participant’s idiosyncratic representa-
tion of anger, which might deviate from the group’s representa-
tion. To create an individual-level estimate for the emotions felt
during decisions to punish, we computed the inverse Euclidean
distance between a participant’s affect ratings made during the
UG and the coordinates reported for each emotion term in the
emotion classification task (see Methods for how we converted
distance to probabilities). Essentially, this allows us to capture the
probability that a person’s unlabeled affect ratings made during a
social interaction are similar (or not) to their unique experience
of a given emotion term (e.g., anger). Results reveal that at the
individual level, disgust (9.41%), disappointment (8.15%), and
anger (7.97%) were the most frequently experienced emotions
(disgust was significantly more likely to be experienced than
anger (t (558)= 3.50, p < 0.001, d= 0.15), while disappointment
was not (t (558)= 0.42, p= 0.68, d= 0.02); see Supplementary
Fig. 9). When deciding to accept, the three emotions most likely
to be experienced were neutral, happy, and satisfied. These
individual-level estimates, which account for the presence of
idiosyncratic emotion representations, largely align with the
population-level results.

The emotions associated with decisions to defect. By using
machine learning algorithms to infer the emotions experienced
during a social exchange, Experiment 1 found that disappoint-
ment is the most representative emotion of decisions to punish
after being treated unfairly, whereas anger seems to play a much
smaller role than originally believed. In Experiment 2 we wanted
to further test the link between anger and social decisions in a
different competitive context. Thus, we leveraged a similar
experimental framework, but this time examined choices to
cooperate or defect. In Experiment 2 (N= 306), participants
played a modified sequential Prisoners’ Dilemma52, where players
decide whether to cooperate or defect with one another. In our
version, both players are given $1 and asked how much they want
to contribute to a joint outcome. Any amount contributed is
multiplied by 1.5 and redistributed evenly amongst both players,
creating a continuous version of cooperate (contribute $1) and
defect (contribute $0). Participants report how they feel about
their partner’s contribution (which ranged from $0 to $1, see
Methods) on the affect grid before deciding how much they
themselves want to contribute.

Sadness and disappointment are associated with defection. To
make the analysis analogous to Experiment 1, we binned con-
tinuous contributions into decisions to defect ($0–$0.49) and
cooperate ($0.50–$1). Results reveal that disappointment (8.83%),
sadness (8.72%), and disgust (7.38%; in that order) were the most
likely emotions associated with defection, all of which were more
likely than anger (5.11%)—which ranked as the 9th most likely
emotion. Paired t tests reveal that disappointment (t (278)= 8.26,
p < 0.001, d= 0.50), sadness (t (278)= 6.84, p < 0.001, d= 0.41),
and disgust (t (278)= 8.37, p < 0.001, d= 0.50), are all sig-
nificantly more likely to be associated with defection in the PD
compared to anger. These results hold if we analyze choice
continuously ($0–$1), which only further confirms that anger
ranks significantly below (8th) both sadness (1st) and dis-
appointment (2nd; see Supplementary Figs. 11, 12). In contrast,
decisions to cooperate are linked to happiness (16.32%), satis-
faction (14.60%), and enthusiasm (13.88%; in that order; see
Supplementary Fig. 10 for full ranking). Results from the unsu-
pervised machine learning approach which makes no assump-
tions about specific emotion labels per se, illustrates that the main
cluster associated with defection is cluster 5 (i.e., feelings of
neutral valence and neutral arousal)—which is more than five

times more common than cluster 1 (i.e., feelings of high negative
valence and high arousal; χ2 1ð Þ ¼ 662:88; p < 0:001). The
individual-level analysis dovetailed with these results, demon-
strating that anger ranks as the 11th most likely emotion asso-
ciated with decisions to defect (see Supplementary Fig. 14 for full
ranking). Together, these results provide converging evidence that
anger is highly unlikely to be the main emotion motivating
competitive social decision-making.

The emotions associated with decisions to free ride. To further
test the generalizability of these results, in Experiment 3
(N= 470), participants played a modified sequential Public
Goods Game53, where participants and three players collectively
decide how much to contribute to a common pool. All players
were given $1 and told that any amount contributed would be
multiplied by two and then redistributed evenly amongst all
players. Participants reported how they felt about their partners’
collective contribution on the affect grid before determining their
own contribution (see Methods).

Sadness and disappointment are associated with free riding. As
in Experiment 2, we binarized continuous contributions into deci-
sions to defect ($0–$0.49) or cooperate ($0.50–$1). Results reveal the
top three emotions associated with defection in a group context are,
sadness (10.36%), disappointment (9.63%), and sluggishness (8.38%)
—with anger (4.74%) ranking 8th (see Supplementary Fig. 15 for full
ranking). Paired t tests revealed that sadness (t (442)= 12.9,
p < 0.001, d= 0.61), disappointment (t (442)= 14.0, p < 0.001,
d= 0.67), and sluggishness (t (442)= 7.60, p < 0.001, d= 0.36) were
all significantly more likely to be associated with decisions to free ride
than anger. As in Experiment 2, these results hold if we analyze
choice continuously ($0–$1), illustrating that both sadness (1st) and
disappointment (2nd) rank significantly above anger (7th; see Sup-
plementary Figs. 16, 17). As before, decisions to cooperate were
linked to feeling happy (13.47%), enthusiastic (12.95%), and satisfied
(12.06%). The unsupervised machine learning model results showed
the main cluster associated with defection was again cluster 5
(associated with neutral valence and arousal), which was more than
six times more likely than cluster 1 (associated with high negative
valence and arousal; χ2 1ð Þ ¼ 4948:80; p < 0:001). Moreover, the
individual-level analysis revealed anger as the 9th most likely emotion
when deciding to free ride (see Supplementary Fig. 19).

Discussion
Which emotions best predict decisions to punish, defect, and free
ride in competitive social interactions? While prior research
argues that feelings of anger play a predominant role in moti-
vating such competitive social choices14, our data-driven machine
learning approach finds that other emotions, primarily dis-
appointment and sadness, are far more likely to be associated
with punishing, defecting and free riding. Despite the intuitive
appeal of negative, highly arousing emotions being linked to
competitive social decision-making, we did not find good evi-
dence that this was the case—regardless of the number of people
involved or the unique social tensions of the interaction. When
we account for individual variability in the representation of
emotion, we find that disappointment is still more frequently
experienced than anger. Even when ignoring emotion labels
entirely and focusing exclusively on unlabeled affect responses,
we find little evidence that highly arousing and negatively
valenced feelings, an affective experience traditionally associated
with the emotion anger, shape these decisions. Instead, negatively
valenced and neutrally arousing emotions—experiences akin to
sadness or disappointment—are the most common affective
experiences associated with punishing, defecting, and free riding.
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By not forcing people to report emotions assumed to be
involved with certain social choices, we observed a diverse array
of emotional experiences driving competitive social decision-
making. Although a forced-choice design can at times be a useful
tool, it necessitates that participants’ responses align with the
expectations of the experimenters54, and it may inflate the
importance of certain emotions according to social norm theory
(e.g., “I ought to feel angry after being treated unfairly”)55,56. By
using unlabeled affect measurements to probabilistically classify
which emotional experiences relate to discrete social choices, our
framework sidesteps these issues. Moreover, this unbiased, data-
driven approach reveals how unlabeled affective responses at the
individual level scaffold the structure of a given emotion at the
population level. For example, some people might be motivated
by “quiet anger” when punishing, while others are more moti-
vated by an “intense rage”. Since no singular approach can
accurately describe the subjective emotional experience of all
individuals57, future research should consider this type of emo-
tion measurement in conjunction with other techniques, such as
self-report or physiological measures.

Detailing how emotion interacts with decision-making is
foundational for understanding the mechanisms guiding social
cognition. As one prominent example, it has long been theorized
—and demonstrated—that specific emotions motivate certain
actions, such as a fear response leading to a tendency to flee2,58,59.
The framework employed by traditional affect theories and
emotion measurements suggests a one-to-one mapping between
certain emotions and choice. Yet, leveraging a broader data-
driven approach that relies less on the discretization of emotion
and which makes no assumptions on the likelihood of candidate
emotions experienced, enabled us to discover the wide hetero-
geneity of the feelings evoked during a specific set of social
interactions. That is, the emotions driving punishment, defection,
and free riding are far more diverse than previously thought.

Given that we found highly negatively valenced emotions to be
more closely linked with decisions to punish, defect, and free ride,
our results highlight the essential role of valence in predicting
social decisions. In contrast, high arousal was not as readily linked
with these choices. This diverges from prior work implicating
autonomic nervous system arousal as a key component moti-
vating decisions to punish25,28, which suggests there might be a
difference in people’s awareness of their emotional processes and
how the body physiologically indexes that process60. It may be the
case that people are less able to appraise their body’s physiological
arousal states, which would indicate that self-reported arousal
does not bear a one-to-one mapping with physiological arousal.
Instead, there may be different affective roles between the con-
scious level associated with reporting arousal states, and the more
implicit measurements garnered at the physiological level. Indeed,
the relationship between physiology and subjective evaluation of
emotions is not straightforward61, as physiological arousal can be
interpreted in different ways depending both on the context62,
and an individual’s level of introspection63. Further research in
this area, particularly efforts to characterize the relationship
between physiological and reported arousal64, can help better
characterize this interactive, dynamic process, and how it might
bias choice.

Although the two-dimensional affect structure of valence and
arousal is central to theories of emotion56,65–67 and grounded in
the body’s neurobiological system68, some aspects of emotional
experience may not be properly captured by a two-dimensional
valence-arousal model. For example, anger and disgust are
both associated with unpleasant, high arousal affect, but are
conceptually linked to different behavioral responses: Anger
is typically associated with approach-motivated responses
and disgust with avoidance-motivated responses69–72. While the

two-dimensional valence-arousal space offers a quick measure-
ment of affect and is thus useful for fast, repeated decision-
making paradigms, adding in more dimensions (e.g., approach/
avoid, anticipated effort, control)73–75, could be helpful in better
characterizing the structure of the emotional space, and should
improve classification accuracy by separating similar emotions
along other dimensions.

Although the general link between emotion and choice is
established in the field of human social cognition, less is under-
stood about the relationship between the specific emotions
guiding social choices. Our results suggest that framing anger as a
motivating force may mischaracterize the nature of the relation-
ship. While we observed large variability in the emotions driving
competitive social choices, emotions characterized by high,
negatively valenced, but muted arousal appeared to play the most
central role in driving decisions to punish, defect, and free ride.
By combining the continuous, dimensional structure of affect
with discrete emotion states, our novel analytic approach allowed
us to identify the likelihood that a particular emotion drives a
social choice, while also revealing the heterogeneity of emotions
experienced during these interactions. As the disciplines of
emotion and behavioral economics advance, we can build on this
progress to further characterize how emotions guide decisions in
a variety of contexts.

Methods
Participants. Across three experiments, participants (N= 1820) completed an
emotion classification task followed by one of three economic games: An Ulti-
matum Game (UG; Experiment 1 N= 906), a Prisoners’ Dilemma (PD; Experi-
ment 2 N= 395); or a four-person Public Goods Game (PGG; Experiment 3
N= 519). Using preregistered criteria based on existing work76, we excluded
participants (N=329 total; UG exclusion= 191; PD exclusion= 89; PGG exclu-
sion= 49) who rated neutral outside of a 100 × 100-pixel square in the center (i.e.,
participants were instructed to rate “neutral” in the center of the dARM). The final
sample for the UG was N= 715 (320 Females, mean age= 34.4 ± 10.1), the final
sample for the PD was N= 306 (131 Females, mean age= 35.5 ± 11.2), and the
final sample for the PGG was N= 470 (238 Females, mean age= 33.0 ± 10.5).
Thus, the final sample across all three experiments was N= 1491 (689 Females,
mean age= 34.2 ± 10.5). Participants were recruited from Amazon Mechanical
Turk and received monetary compensation and provided informed consent in
a manner approved by Brown University’s Institutional Review Board under
protocol 1607001555.

Procedure. In the Emotion Classification Task, participants rated a series of feeling
words on an affect grid varying on valence and arousal (Fig. 1), modified from the
traditional affect grid77–79. A person who is rating anger might, for example, place
their cursor at the top left corner of the grid, indicating high arousal and negative
valence (participants are free to report any subjective interpretation of anger, such
as, a quiet anger). The 20 feeling terms (neutral, surprised, aroused, peppy,
enthusiastic, happy, satisfied, relaxed, calm, sleepy, still, quiet, sluggish, sad, dis-
appointed, disgusted, annoyed, angry, afraid, nervous) were selected from past
research to represent the octants of the emotion circumplex space evenly44 or
because they have been implicated in decisions to punish and defect during social
interactions80. Participants then completed one of three economic games which
were structured in a similar way. Finally, participants completed a series of indi-
vidual difference questionnaires that were not analyzed in this research.

Ultimatum game. Participants completed 20 one-shot Ultimatum Games as either
the Responder (N= 543) or a third-party (N= 172). Since Responders and third-
parties’ affective responses were not significantly different, we collapsed across role
(see Supplementary Information). After receiving the offer, participants reported
how they felt on the affect grid before deciding to accept or reject. Participants
received an even distribution of offers ranging from fair ($.50, $.50) to highly unfair
($.95, $.05). Unfairness was operationalized numerically according to the amount
of money kept by the partner. Participants engaged with new partners on each
round. The data from the UG was part of a dataset collected for a previously
published study76.

Prisoners’ dilemma. Participants were paired with a new partner (denoted by a face
and name) on each round. Both players were given $1, which they could use to
contribute to a collective pot. Any amount contributed was multiplied by 1.5 and
redistributed evenly between the pair. The tension lies between making more
money by defecting at the expense of the other player’s monetary gain. Our PD
version was structured in a sequential manner, so that emotion could be measured

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29372-8

8 NATURE COMMUNICATIONS |         (2022) 13:1718 | https://doi.org/10.1038/s41467-022-29372-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


during the game, and to compare it to the Ultimatum Game data. Participants
decided how much they wanted to contribute in $0.10 increments. Participants
completed 22 one-shot Prisoners’ Dilemma rounds, where partners contributions
ranged from defection ($0) to full ($1) cooperation.

Public goods game. The Public Goods Game was similar to Experiment 2 except
participants were paired with three other players (players were denoted by an
anonymous Amazon Mechanical Turk IDs). The players were each given $1, which
they could use to contribute to the common pot. Once contributed, the money was
doubled and redistributed evenly between all four players. A player could make
more money at the expense of the outcomes of others by free riding while the
others pay into the common pot. After participants were informed of the collective
amount contributed by the other players, they reported how they felt on the affect
grid about the collective contributions. Then they decided how much to contribute
themselves (up to $1, in $0.10 increments). Participants completed 62 sequential
one-shot Public Goods Games with an even distribution of partner contributions
ranging from none ($0) to full ($3 total contribution).

Machine learning models. In the Emotion Classification Task participants rated a
variety of emotion words on the 500 × 500 affect grid. Participants rated 20 emotions,
not all of which were related to punishing/accepting an unfair offer or free riding
amongst a group (e.g., “peppy”). This data was used to develop the supervised
machine learning classifiers. We trained three supervised machine learning classifi-
cation algorithms (Fig. 2) using tenfold cross-validation on a 70–30 train-test split of
the emotion classification task, and one unsupervised machine learning algorithm.
Within the training data, we use tenfold cross-validation which randomly splits the
training data into ten subsets. One subset is reversed for validation while the model is
trained on the other subsets according to the model’s specific algorithm. The model is
tested on the reserved subset and an accuracy score is recorded. In this classification
problem, accuracy is the proportion of correct classifications over the total classifi-
cations. A null accuracy would be 5% because this represents a model which simply
suggests at each classification. Because the emotion classification dataset is balanced,
meaning each of the emotion classes is equally represented, accuracy is a good metric
for evaluating the model. The process is repeated until each of the ten subsets have
served as the validation set and the cross-validation accuracy is the average of these
recorded accuracies.

Neural network. Neural networks are a nonlinear statistical model and a popular
choice for complex classification problems. We used a feed-forward single-hidden-
layer neural network81, which had two input nodes for valence and arousal, a
single-hidden layer with a variable number of hidden nodes, and 20 output nodes
representing the 20 emotions from the classification task. The number of nodes in
the hidden layer was determined by cross-validation and the final model contained
27 nodes in the hidden layer, with a decay of 0.035, which were fully connected to
the input and output nodes.

Support vector machine. Although support vector machines are typically used for
binary classification, they can be a useful tool for multi-class classifications. The
support vector classifier constructs a linear boundary in a large, transformed ver-
sion of the feature space (in this case, valence and arousal ratings) by defining an
optimal hyperplane that separates two classes. For our multi-class problem, we
used a “one-against-one” approach or pairwise classification method which con-

structs
k
2

� �
classifiers where each one is trained on data from two classes82.

Because our classes are not perfectly separable (i.e., they overlap and mis-
classifications exist within a margin of the hyperplane), we use cross-validation to
determine the correct “Cost” (C) parameter, which defines the weight of how much
of the data inside the margin of error contributes to the overall error. The final
SVM model used a cost parameter of C= 0.01.

k-nearest neighbors. Another popular method for classification of data with a low
number of dimensions is the K-nearest neighbors (KNN) classifier. The KNN
classifier is a non-parametric approach that computes the conditional probability of
the data class for any data point. This is done by comparing a data point to the
class of data points in close proximity. The classifier chooses a neighborhood size,
represented by the parameter K, and estimates the conditional probability for
emotion cluster j as the proportion of data in the neighborhood set, whose class is
also j. The K parameter and neighborhood size was determined through cross-
validation, and the final KNN model used a neighborhood size of k= 175.

Model selection. Both the NN and KNN reached similar levels of overall testing
accuracy (NN: 35.80%, KNN: 35.97%) and kappa (NN: 32.42, KNN: 32.60), while
the SVM fit relatively poorly (SVM accuracy: 19.90%, SVM kappa: 15.68). While
the KNN had marginally more accurate classifications, it also had undesirable
properties, such as sporadic emotion islands (e.g., a tiny, isolated pocket of an
emotion surrounded by a larger emotion cluster). The NN model achieved similar
accuracy and had smooth emotion boundaries between classifications. For these
reasons, we selected NN as the final model, but note that both models had com-
parable results. After training the NN model and validating its accuracy through

cross-validation, we applied the trained neural network to the unlabeled emotion
data generated from the affect grid in the Ultimatum Game, Prisoners’ Dilemma,
and Public Goods Game. We generated a likelihood of this emotion data being
classified in each of the 20 emotion categories. That is, each emotion rating across
all trials of the behavioral economic games is given a probability for each of the 20
possible emotion classes, which together add up to 1. This approach allows us to
identify which emotion states are likely to drive punishment, without potentially
biasing the result in favor of any specific emotion (e.g., specifically asking “how
angry do you feel?”).

K-means clustering. K-means clustering is an unsupervised machine learning
method for finding clusters in a set of unlabeled data. Although the emotion
classification data was labeled, we can strip each emotion from its label for the
purposes of finding optimal emotion clusters which vary on valence and arousal
intensity. Given a desired number of cluster centers, the k-means procedure ran-
domly defines the initial center of the cluster and then iteratively moves the center
of that cluster to minimize the total within-cluster variance83. We chose nine
clusters because it formed a rough three-by-three checkered emotion space
representing high, medium, and low valence and arousal combinations.

Euclidean distance measurements. Although the Euclidean distance measurement
used in the individual difference analyses are not formal machine learning models,
they represent another way to classify emotions that are unique to each participant.
We calculate the Euclidean distance between the 20 emotion terms in the emotion
classification task and the unlabeled affective reports during each trial of the
economic games. We convert Euclidean distance into a numeric probability using
inverse distance weighting, where the probability is the inverse of the Euclidean
distance for a given emotion over the sum of inverse Euclidean distances of all
emotions. Smaller Euclidean distances indicate a higher probability that the
unlabeled affective experience is similar to the valence and arousal rating of the
emotion term (e.g., anger, disgust, etc.) for each participant separately.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Experimental materials information and all experiment de-identified data are publicly
available at https://github.com/jpheffne/NC_emotion_classify. The materials used in this
study are widely available.

Code availability
Data analysis script notebooks are publicly available at https://github.com/jpheffne/
NC_emotion_classify.
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