
 

 1 

SUPPLEMENT 
Anxiety Impedes Adaptive Social Learning Under Uncertainty 

 
Amrita Lamba, Michael J. Frank, Oriel FeldmanHall 

 
Supplemental Methods  
 
Assessing Anxiety. Subjects were grouped as a function of clinical-significance depending on 
their scores from the 7-item Generalized-Anxiety Disorder Scale, the GAD-7. Based on clinical 
guidelines (Spitzer, Kroenke, Williams, & Löwe, 2006), a score of 10+ on the GAD-7 scale 
reliably predicts the prevalence of an underlying anxiety disorder (89% post-test predictive 
probability) and is therefore considered clinically-significant. Assessed clinical-significance in 
our study does not mean that subjects were already clinically-diagnosed based on DSM-5 
standards, however, clinically-significant scores strongly suggest that participants experience 
many of the characteristic symptoms associated with GAD (Löwe et al., 2008). GAD-7 scores 
are displayed in Figure S1 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1 

Figure S1. Distribution of GAD-7 scores from study sample (N = 354). The dotted red 
line separates the sample into sub-threshold (healthy) and clinically-significant 
(anxious) groups with respect to clinical guidelines (score of 10+ considered clinically 
significant). Mean GAD-7 score = 6.16, SE = 0.31. Nhealthy = 257, Nanxious = 97.  
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Treating Anxiety as a Continuous Metric. As noted above, subjects were grouped together 
depending on whether they were above or below clinically-established thresholds on the GAD-7 
scale. Although investigating differences in task performance across groups is a useful way to 
parse our study hypotheses, we wanted to ensure that our effects also hold when treating anxiety 
as a continuous construct. In order to do this, we modeled our data using raw GAD-7 scores (i.e. 
scores shown in Figure S1) and the results still hold. When examining the mean investments 
across task blocks as a function of GAD-7 score (treated continuously: Investment ~ GAD 
Continuous * Valence) the anxiety × valence interactions are still significant and follow the 
same pattern of results observed in the original analyses where GAD-7 is modeled 
dichotomously. Below are observed statistical effects of linear mixed effects regressions (lme4 
package in R) using raw GAD-7 scores (i.e. treated continuously); TG neutral start player, 
anxiety × valence interaction, t(351) = 2.39, p = 0.017; TG positive start player, anxiety × 
valence interaction, t(351) = 2.62, p = 0.009; SM neutral start player, anxiety × valence 
interaction, t(351) = 2.53, p = 0.012; SM positive start player, anxiety × valence interaction, 
t(351) = 2.36, p = 0.019. As observed with dichotomous analyses, no significant anxiety × 
valence interactions were observed in the TG or SM negative start cases.  
 
When we examine the decay rate difference with GAD as a continuous variable (Decay rate ~ 
GAD Continuous * Condition), we observe a significant main effect of GAD (t(687.88)= 2.49,  
p = 0.013), and condition (t(352) = 3.36, p < 0.001), such that there is an observed Trust Game x 
GAD effect (t(352) = 2.64, p = .009) but no Slot Machine x GAD effect (p > .05), mirroring the 
data from figure 4b. There is not, however, a GAD x condition interaction (t(352) = -1.39, p = 
0.165) which may be the result of the model being slightly underpowered to detect an effect 
considering how variance is accounted for in the continuous mixed model regression (there are 
only two decay rate data points per subject). 
 
Excluded Subjects. Exclusion criteria were twofold: those who demonstrated poorer learning 
than chance and those who clicked through the entire experiment by indicating the same 
response on all trials of one or both tasks, which was assessed through model fit values (AICs) 
that were not better than those derived from chance behavior (-2*log (.5)*(No. trials) = -116.45), 
or those who had very close to 0 values (i.e. perfectly predictable), which were diagnostic of 
highly deterministic and repetitive behavior (e.g. investing $1.00 on all 84 trials of the task). 
These extremely repetitive behaviors could be captured in the model through reaching upper-
bound on the inverse temperature parameter (i.e. highly deterministic behavior), together with 
upper and lower-bounds of the bias parameter (depending on whether the subject invested on 
every trial), and lower bounds on decay parameters (i.e. no updating of information).  
 
Therefore, to exclude subjects with worse than chance performance and those who simply did 
not engage in the task as evidenced through repetitious responses on all trials, we restricted our 
sample to subjects with AIC values > -116.45 (indicating performance at or better than chance) 
and < the model AIC upper bound (indicating variability in trial by trial responses). Therefore, 
using AIC values derived from the simplified B-RL model across both trust and slot machine 
tasks, we excluded data from 58 subjects (n = 20, AICB-RL < -116.45 & n = 38, AICB-RL = -12.00) 
for a final sample size of N = 354. We chose to exclude subjects based on simplified B-RL 
model fit because simplified B-RL was identical to DB-RL but had fewer parameters, and 
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therefore a slightly less strict benchmark for chance performance. Because our experiment 
requires within-subject analyses across tasks, subjects who exhibited worse-than-chance or 
extremely repetitive behavior in only one task were still excluded from the study, in order to 
ensure pairwise comparisons were feasible. Model fits of all subjects prior to exclusion (N = 
412) are plotted below.  
 

AIC  =  2*(log likelihood)-2*(No. model parameters) 
 
As a proportion of the total sample, the exclusion criteria removed 5.10% of subjects that were 
below chance and also had clinically-sig. anxiety, compared to 8.74% that were below chance 
but were healthy. Therefore, anxious and healthy subjects were removed at similar rates. The 
excluded group (N = 58) did not have significantly higher anxiety scores compared to the final 
sample (Mean GAD-7 in final sample: 6.16; Mean GAD-7 of excluded group: 7.63; t(410) = -
1.73, p > 0.05).   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure S2 

Figure S2. Distribution of AIC values across models and healthy vs. anxious groups. The far-left dotted blue 
line in each panel demarcates model fit values above and below chance performance. Subjects that fell below 
the chance threshold corresponding to the simplified B-RL model were excluded from all further analyses. 
The far-right dotted blue line denotes the upper-bound of model AIC in which subjects were perfectly fit to the 
model through repetitive behavior, therefore identifying participants that indicated the same response on 
nearly all trials of the task.  
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Believability Ratings: We wanted to be extra cautious that subjects were treating the Trust Game 
as a fundamentally social task and therefore measured the extent to which subjects believed they 
were interacting with real partners online. At the end of the experiment, subjects were asked to 
indicate how much they believed they were interacting with real partners. 70% reported no doubt 
to only some doubt that their partners were real. As a more conservative test, we wanted to 
ensure that believability ratings (reported on a scale from 1-6) did not impact our observed 
statistical results.  We entered subject-specific believability ratings into our main regressions, 
which controls for the effects of task suspicion. Entering each subject’s believability score into 
the main models did not quantitatively change any of the relevant statistics reported in the main 
manuscript or supplement (the betas associated with believability scores for all analyses were 
non-significant, p > 0.29 for all). 
 
Modeling Decision Space. Although subjects could in principle invest any amount from 0.10 to 
1.00 on each trial, the optimal payoff maximizing strategy is to invest the full amount ($1.00) if 
the trustee returns more than 0.25 the amount (after it is multiplied by 4), or to invest the 
minimum ($0.10) if the trustee returns less than that. Indeed, the distribution of investments in 
both healthy and anxious subjects were bimodal at $0.10 and $1.00 (Figure S3), suggesting that 
most subjects learned to use these anchors to maximize their earnings. We thus binarized the 
decision space to predict whether subjects would invest or not: when the player was set to return 
more than 0.25, high investments (at or above $0.50) were considered optimal, whereas low 
investments (below $0.50) were considered approximately optimal when the player-algorithm 
was set below $0.25. This was further validated by the observation that subjects were best fit by 
a model in which they would choose $1.00 if the probability of the other person repaying their 
trust (i.e. that the return was greater than 0.25) was greater than 50%, as quantified by the bias 
parameter (see Tables S5 and S6, Bias 𝜓 ~ 0.5 in all cases).   
 
Due to the 4% noise boundary, subjects rarely broke exactly even (i.e. the randomly sampled 
proportion of return always fell on one side of the 0.25 threshold) and subjects generally earned 
or lost at least $0.01 on the 0.25 proportion return trials. Although conceptually these trials 
should be treated as breaking even, the effects produced from the 4% noise boundary essentially 
cancelled out rewards and losses during the break-even blocks, so value was generally kept 
stable in these periods.   
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Modeling Feedback. Because feedback was presented on a continuous scale in our experiment, 
we also examined a continuous learning rule in which the value of investing $1.00 or $0.10 was 
updated as a function of scaled prediction errors (i.e. the outcome relative to their actual 
investment). Continuous versions of both the Bayesian and RL model did not adequately capture 
the data and resulted in poorer fits to the data, as indexed through the poorer model fits and 
posterior predictive checks. In other words, subjects were effectively treating the outcomes as 
more dichotomous in nature, despite the fact that feedback was continuous. This strategy is 
roughly normative, given that the payoff-maximizing strategy is to fully invest if the outcomes 
are above the threshold needed to increase the expected value, and to minimally invest otherwise. 
We therefore simplified the model, such that feedback was coded in terms of the payoff-
maximizing strategy (i.e., whether the outcome indicated that investing would be beneficial or 
not). In other words, if the agent (or machine) was set to return more than 0.25 of the investment, 
the model iteratively coded this as gain trial, whereas any investment below 0.25 was coded as a 
loss trial. All subsequent models were fit using the binarized learning rule.   
 
 
 
 
 
 
 
 
 
 
 

Figure S3. Distribution of investments across the Trust Game and slot machine task, broken out 
by healthy vs. anxious groups (N = 354, study sample). As shown in the above distributions, 
responses were highly bimodal at $0.10 and $1.00. Healthy Group: MeanTG = 0.49, SETG = 
0.024, MeanSM = 0.55, SESM = 0.024. Anxious Group: MeanTG = 0.53, SETG = 0.038, MeanSM = 
0.58, SESM = 0.038. 

Figure S3 
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Dynamic Bayesian-RL Model  
 
Model parameters. There were 6 free parameters that were fit to each subject by maximizing the 
log likelihood across 5 iterations using the fmincon function in MATLAB R2017a. Model 
parameters are described below.  
 
Table S1: Dynamic Bayesian-RL model parameters  

Model Parameter Parameter Description Upper-bound  Lower-bound 
Inverse 

Temperature 𝜁 
Degree to which subject 
exploits learned decision-rule 
associated with rewarding 
outcomes through 
deterministic vs. exploratory 
behavior 

20 - highly 
deterministic 
behavior (always 
repeats action 
previously 
associated with 
reward) 

1 - always selects at 
random 

Bias 𝜓 Benchmark for investing (i.e. 
how much additional value 
does the subject need to derive 
from investing $0.10 in order 
to select the choice over a 
preferred strategy to always 
invest $1.00) 

1.0 - high 
benchmark for 
investing (subject is 
biased towards never 
investing $1.00) 

0.1 – low benchmark 
for investing (subject 
is biased towards 
always investing 
$1.00) 

Negative Decay  
Intercept 𝛾%&'( 

Degree of decay of negative 
outcomes, which prevents the 
posterior distribution from 
becoming overly confident 
(certain) from previous 
experience  

1.0 – no decay 
(posterior 
distribution is 
updated from 
negative outcomes 
and previous 
experiences 
accumulate) 

0.1 – maximal decay 
(added uncertainty 
prevents posterior 
distribution from 
integrating observed 
negative outcomes 
over experience) 

Positive Decay 
Intercept 𝛾%)*+ 

Degree of decay or uncertainty 
over positive outcomes 

1.0– no decay 
(posterior 
distribution is 
updated from 
positive outcomes 
and previous 
experiences 
accumulate) 

0.1 – maximal decay 
(added uncertainty 
prevents posterior 
distribution from 
integrating observed 
positive outcomes) 

Negative Dynamic 
Decay 𝛾,&'( 

Extent to which negative 
outcomes are decayed as a 
function of change points in 
uncertainty  

0— no modulation 
of decay rate as a 
function of changes 
in entropy (∆𝐻) 

-2.0—maximal 
adjustment of decay 
rate as a function of 
entropy (∆𝐻) 

Positive Dynamic 
Decay 𝛾,)*+ 

Extent to which positive 
outcomes are decayed as a 
function of change points in 
uncertainty 

0 – no modulation of 
decay rate as a 
function of changes 
in entropy (∆𝐻) 

-2.0 —maximal 
adjustment of decay 
rate as a function of 
entropy (∆𝐻) 
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Model setup. As noted above we assumed that subjects tracked the probability that it was worth 
investing in the trustee (i.e., that their proportion of return > 0.25). The optimal behavior for 
whether to invest only considers whether the outcome is better than the indifference point, and 
hence we track the probability of the trustee returning amounts that are larger than 0.25, rather 
than tracking the specific proportion returned (models that considered more continuous 
representations did not fit as well).   
 

𝑝(𝜃|𝑟𝑒𝑡𝑢𝑟𝑛8, … 𝑟𝑒𝑡𝑢𝑟𝑛8:) = 	
𝑝(𝑟𝑒𝑡𝑢𝑟𝑛8, … 𝑟𝑒𝑡𝑢𝑟𝑛8:|𝜃) × 	𝑝(𝜃)

𝑝(𝑟𝑒𝑡𝑢𝑟𝑛8, … 𝑟𝑒𝑡𝑢𝑟𝑛8:)
 

 
Given that the likelihood of any observation	given the underlying rate of return is Bernoulli, 
𝑝(𝑟𝑒𝑡𝑢𝑟𝑛8, … 𝑟𝑒𝑡𝑢𝑟𝑛8:|𝜃), we modeled the belief about this probability, 𝑝(𝜃), as the conjugate, 
a beta distribution (Daw, Niv, & Dayan, 2005; Doll, Jacobs, Sanfey, & Frank, 2009; Frank, Doll, 
Oas-Terpstra, & Moreno, 2009; Franklin & Frank, 2015). Thus, each time the proportion return 
is greater than 0.25 (i.e. there is a positive prediction error) alpha was incremented +1, whereas 
each time there was a negative prediction error beta was incremented +1. Alpha and beta values 
were used to update the posterior distribution at the end of each trial. Effectively, this approach 
tracks the probability of a reward prediction error rather than tracking accumulated rewards over 
time. Each player (and machine) was individually modeled in separate distributions and all priors 
were initialized using the beta distribution conjugate prior (beta 1,1; i.e. uniform), as we opted 
for a more conservative approach in modeling subject-specific priors. Additionally, we did not 
have any strong predictions regarding subject-specific priors pertaining to the Trust Game, since 
subjects were told they would be engaging with anonymous others online. Below are the 
equations for the mean(𝜇jt) and variance(𝜎@jt) of the posterior Beta distribution, where j 
corresponds to the player type (or machine type) and t denotes the current trial. 
 

𝜇jt  = A BCDEB
BCDEB	FGH8B

I and 𝜎@jt  = A BCDEB∗GH8B
(BCDEB	FGH8B)K∗(BCDEBFGH8BF,)

I 

 
The alpha and beta values were therefore used to keep a running track of positive and negative 
outcomes (α, β), which are used to update the posterior distribution on a trial-by-trial basis, thus 
approximating the probability that it is worth investing in the trustee.   
 
Choice rule. On each trial of the TG and SM, choice probabilities were modeled through a 
softmax logistic function, comparing the mean value of the posterior distribution (i.e. the best 
estimate of whether they are likely to return the investment), where ζ and ψ are inverse 
temperature and bias parameters, respectively.  Note that if the subject is optimal the bias 
parameter should be 0.5, which would indicate that they only choose to invest $1.00 when the 
probability of doing so is greater than 50%. Nevertheless, we allowed for this bias parameter to 
be freely estimated, to allow for subject-specific biases in overall investment. Here, we will 
represent the probability of trusting $1.00 or $0.10 as p($1.00) and p($0.10), respectively.  
 	

𝑝($1.00) 	= 	
𝑒U∗VWX

𝑒U∗VWX +	𝑒U∗Z
 

 
𝑝($0.10) = 1 − 	𝑝(𝑡𝑟𝑢𝑠𝑡	$1.00) 
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Entropy. In order to index uncertainty sensitivity, we modeled the entropy (𝐻) in the choice 
policy to summarize the uncertainty as to whether one should invest or not, as follows: 
 

𝐻8 = 	−]𝑝($1.00) 	×	 𝑙𝑜𝑔@a𝑝($1.00)b − 	𝑝($0.10) 	×	 𝑙𝑜𝑔@a𝑝($0.10)bc 
 
We then kept track of how this entropy changes from one trial to the next ∆𝐻 = 	𝐻8 −	𝐻8d, 
to capture whether there is likely to be a change point, such that this change in entropy could be 
used to further increase uncertainty and thereby speed up learning (Franklin & Frank, 2015). 
 
Decay. When observed outcomes are not decayed (𝛾 = 1), the beta distribution is maximally 
updated through the alpha and beta hyperparameters. In other words, the posterior distribution 
will reflect the entire history of actions taken by the trustee. When observed outcomes are 
decayed (𝛾 < 1), the added uncertainty prevents the posterior distribution from becoming overly 
confident (i.e. it allows for the possibility that earlier observations are no longer relevant) and 
thus increases opportunity for learning flexibility. The γ% parameters correspond to the overall 
decay of previous outcomes. The γ, captures the extent to which decay is modulated on a trial-
by-trial basis as a function of changes in the entropy (∆𝐻) and therefore indexes the extent to 
which one’s learning rule is selectively adjusted through perceived changes in task-level 
uncertainty (Franklin & Frank, 2015). Critically, both γ% and γ, parameters jointly impact 
overall decay (𝛾) of alpha and beta hyperparameters. All gamma parameters were further 
partitioned by valence (positive vs. negative outcomes) to measure valence-dependent 
differences in learning.  
 

𝑙𝑜𝑔𝑖𝑡a𝛾Dghb = 	 γ%)*+ +	γ,)*+ ∙ ∆𝐻 
𝑙𝑜𝑔𝑖𝑡a𝛾:Hjb = 	 γ%&'( +	γ,&'( ∙ ∆𝐻 

 
𝛼8F, = 	𝑎8 ∙ 𝛾Dgh	 		
𝛽8F, = 	𝛽8 ∙ 𝛾:Hj	 

Simplified Bayesian-RL Model  
 
Model parameters. A total of 4 free parameters across 5 iterations were fit to each subject. See 
Table S1 for parameter descriptions. The simplified B-RL model was the same in all respects to 
DB-RL, except that the model omitted γ,)*+ and γ,&'( parameters.  
 
Decay. Decay parameters were not modeled as a function of changes in task entropy (∆𝐻). Thus, 
only the decay intercepts were used to decay alpha and beta parameters. This model therefore 
allows for the possibility that reward statistics might change (due to overall decay rates) but does 
not adaptively alter this perception with changes in uncertainty of the trustee’s behavior. Alpha 
and beta were updated as shown below.  
 

𝛼8F, = 	𝑎8 ∙ 𝛾Dgh	 		
𝛽8F, = 	𝛽8 ∙ 𝛾:Hj	 
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Reinforcement Learning Model  
 
Model parameters. In the RL model 3 free parameters across 5 iterations were fit to each subject. 
 
Table S2: RL model parameters  

Model parameter Parameter description Upper-bound  Lower-bound 
Inverse temperature 𝜁 See description in Table 

S1 
20 - highly 
deterministic 
behavior (always 
repeats action 
previously 
associated with 
reward) 

1 - always selects 
at random 

Bias 𝜓 See description in Table 
S1 

1.0 - high 
benchmark for 
investing 
(subject is biased 
towards never 
investing $1.00) 

0.1 – low 
benchmark for 
investing (subject 
is biased towards 
always investing 
$1.00) 

Learning rate 𝜆 Degree of to which 
positive and negative 
prediction errors update 
the value function.  

0.1 – minimal 
update of V 

1.0 – maximal 
update of V  

 
 

As a benchmark-comparison model we constructed an RL model derived from the optimal (i.e. 
payoff-maximizing) learning rule in the task. The model was set up to separately track the 
reward-statistics of each player through the value function, where value (V, for each playeri:j 
tracked at each time-stepi:t) was calculated as the difference between actual rewardt (i.e. return) 
from playerj and anticipated reward (𝑉p8), weighted by the learning rate (𝜆), which was fit to each 
subject. Value was initialized at 0.5, as we assumed participants would begin the task treating 
players indiscriminately.  
 

𝑉p8 	= 	𝜆 ∗ (𝑟𝑒𝑤𝑎𝑟𝑑8 − 𝑉p8) 
 
For the choice function, denoted below as the probability of trusting, we again leveraged the 
optimal choice rule for the task. Because the payoff maximizing response on a given trial was 
always either $0.10 or $1.00, subject choices were modeled using these values. Here, the 
probability of investing the full $1.00 was indexed by p($1.00) and the probability of investing 
the minimum $0.10 was indexed as p($0.10). Subject choices on a given trial were modeled in 
the following choice function, where 𝑉p8 is the derived predicted value associated with trusting a 
specific player, and 𝜁 and 𝜓, respectively, are inverse-temperature and bias parameters, fit to 
each subject.  
 

𝑝($1.00) 	= 	
𝑒U∗sWX

∑ 𝑒U∗sWX +	𝑒U∗Z8
uv,
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Supplemental Results  
 
Model Fits and Model Comparison. All model fits were calculated based on Bayes 
Loglikelihood, which was used to compute AIC (Akaike information criterion) using the 
following formula.  
 

AIC  =  2*(log likelihood)-2*(No. model parameters)  
 
To determine the best-fitting model, we applied Bayesian model selection over group AICs using 
the spm_BMS function (Stephan, Penny, Daunizeau, Moran, & Friston, 2009). Bayesian model 
selection evaluates the exceedance probability that a given model is more likely than others, 
given the full set of AIC values for each model and each subject. Bayesian model selection is 
particularly robust to outliers than a simple comparison of mean AIC fits across groups (Stephan 
et al., 2009).  
 
Table S3: Model fit estimates across groups, tasks, and computational models.  
 

Group  Condition Model  AIC SEAIC Bayes Loglikelihood SEBayesLL 

Healthy Trust Game DB-RL -62.08 0.99 25.04 0.49 
  B-RL -64.67 0.984 28.34 0.49 
  RL -74.97 1.27 34.48 0.63 
 Slot Machine  DB-RL -64.61 1.13 26.31 0.56 
  B-RL -67.26 1.117 29.63 0.56 
  RL -83.51 1.357 34.48 0.63 
Anxious Trust Game  DB-RL -64.76 1.80 26.38 0.90 
  B-RL -66.24 1.84 29.12 0.92 
  RL -85.46 2.46 39.73 1.23 
 Slot Machine  DB-RL -66.26 1.71 27.13 0.86 
  B-RL -67.48 1.76 29.74 0.88 
  RL -90.01 2.37 42.01 1.18 
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Figure S4. Distribution of model AICs with Bayesian Model Selection rank. Model fits are 
broken out by healthy and anxious groups.  

Figure S4 
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Dynamic Bayesian-RL Model Parameter Fit 
 
Table S4: Mean and standard error estimates of DB-RL model parameters.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Group Cond. Mean 
𝛾,)*+ 

SE
	𝛾,)*+ 

Mean 
𝛾,&'( 

SE 
𝛾,&'( 

Mean 
𝛾%)*+ 

SE
𝛾%)*+ 

Mean
𝛾%&'( 

SE 
𝛾%&'( 

Mean 
𝜁 

SE 
𝜁 

Mean 
𝜓 

SE 
𝜓 

Healthy TG -0.87 0.04 -0.95 0.04 0.44 0.02 0.52 0.02 7.31 0.26 0.52 0.01 
 SM -0.88 0.04 -0.97 0.04 0.43 0.02 0.48 0.02 7.26 0.26 0.50 0.01 
Anxious TG -0.82 0.06 -0.83 0.06 0.54 0.03 0.49 0.02 7.17 0.38 0.52 0.02 
 SM -0.79 0.06 -0.96 0.06 0.53 0.03 0.48 0.02 6.40 0.38 0.47 0.02 

Figure S5. Plot of posterior predictive simulation of DB-RL model. Posterior predictive 
check was conducted by simulating data from subject-specific parameter fits.  

Figure S5 
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Distribution of Parameter Fits.  
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Model Performance Check. In order to ensure that our parameters of interest were adequately 
capturing task performance, we modeled the decay rate difference as a function of distance from 
the optimal response on the previous trial which is a rough approximation of learning from 
feedback (subject investment – optimal investmentt-1). As shown below, the decay rate difference 
was significantly correlated with distance from optimal (p < 0.001 for all), validating that our 
measure of interest was capturing relevant task behavior. As shown below, a higher decay rate 
difference (𝛾%)*+ −	𝛾%&'() was associated with over-investing, whereas a lower negative rate 
difference (𝛾%&'( > 	 𝛾%)*+) was indicative of under-invested. Conversely, a decay rate difference 
of 0, (𝛾%&'( = 	 𝛾%)*+) meaning equal decay of rewards and losses, was associated with optimal 
learning.  
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Bayesian-RL Model  
 
Table S5: Mean and standard error estimates of B-RL model parameters. 
 
Group Cond. Mean 

𝛾Dgh 
SE 
𝛾Dgh 

Mean 
𝛾:Hj 

SE 
𝛾:Hj 

Mean 
𝜁 

SE 
𝜁 

Mean 
𝜓 

SE 
𝜓 

Healthy TG 0.50 0.01 0.55 0.01 8.29 0.30 0.52 0.01 
 SM 0.54 0.01 0.50 0.01 7.83 0.30 0.50 0.01 
Anxious TG 0.56 0.03 0.51 0.02 7.61 0.44 0.53 0.02 
 SM 0.56 0.03 0.46 0.02 7.86 0.44 0.48 0.02 

 
RL Model  
 
Table S6: Mean and standard error estimates of RL model parameters. 
 
Group Cond. Mean 

𝜆 
SE 
𝜆 

Mean 
𝜁 

SE 
𝜁 

Mean 
𝜓 

SE 
𝜓 

Healthy TG 0.44 0.01 3.49 0.15 0.37 0.01 
 SM 0.42 0.01 2.89 0.15 0.31 0.01 
Anxious TG 0.37 0.02 2.64 0.21 0.33 0.02 
 SM 0.39 0.02 2.62 0.21 0.30 0.02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 16 

References 
 
Daw, N., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and 

dorsolateral striatal systems for behavioral control. Nat Neurosci, 8(12), 1704-1711. 
doi:10.1038/nn1560 

 
Doll, B. B., Jacobs, W. J., Sanfey, A. G., & Frank, M. J. (2009). Instructional control of 

reinforcement learning: a behavioral and neurocomputational investigation. Brain Res, 
1299, 74-94. doi:10.1016/j.brainres.2009.07.007 

 
Frank, M. J., Doll, B. B., Oas-Terpstra, J., & Moreno, F. (2009). Prefrontal and striatal 

dopaminergic genes predict individual differences in exploration and exploitation. Nat 
Neurosci, 12(8), 1062-1068. doi:10.1038/nn.2342 

 
Franklin, N. T., & Frank, M. J. (2015). A cholinergic feedback circuit to regulate striatal 

population uncertainty and optimize reinforcement learning. Elife, 4. 
doi:10.7554/eLife.12029 

 
Löwe, B., Decker, O., Muller, S., Brahler, E., Schellberg, D., Herzog, W., & Herzberg, P. Y. 

(2008). Validation and standardization of the Generalized Anxiety Disorder Screener 
(GAD-7) in the general population. Med Care, 46(3), 266-274. 
doi:10.1097/MLR.0b013e318160d093 

 
Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A Brief Measure for 

Assessing Generalized Anxiety Disorder: The GAD-7. JAMA Internal Medicine, 166(10), 
1092-1097. doi:10.1001/archinte.166.10.1092 

 
Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian 

model selection for group studies. Neuroimage, 46(4), 1004-1017. 
doi:10.1016/j.neuroimage.2009.03.025 

 


