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Abstract: People learn adaptively from feedback, but the rate of such learning differs drastically 
across individuals and contexts. Here we examine whether this variability reflects differences 
in what is learned. Leveraging a neurocomputational approach that merges fMRI and an iterative 
reward learning task, we link the specificity of credit assignment—how well people are able to 
appropriately attribute outcomes to their causes—to the precision of neural codes in the 
prefrontal cortex (PFC). Participants credit task-relevant cues more precisely in social compared 
to nonsocial contexts, a process that is mediated by high-fidelity (i.e., distinct and consistent) 
neural representations in the PFC. Specifically, the medial PFC and orbitofrontal cortex work in 
concert to match the neural codes from feedback to those at choice, and the strength of these 
common neural codes determines learning success. Together this work provides a window into 
how neural representations drive adaptive learning.  
 
Significance Statement: Successful learning requires selectively attributing outcomes to their 
cause—a process known as credit assignment. Little is known about how the brain performs this 
credit assignment, or how the process might differ across contexts or individuals. Functional 
neuroimaging analyses reveal that precise credit assignment is linked to high fidelity (i.e., 
distinct and consistent) neural representations of causal cues in the prefrontal cortex (PFC), 
which supports increased differentiation between stimuli during learning. Our results reveal why 
individuals learn differently: differences are not driven by the magnitude of learning signals (i.e., 
stronger prediction errors) as has been previously claimed, but by differences in the strength of 
neural representations to which those learning signals are attributed.   
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Imagine that you are applying for a job and receive varying feedback on your “pitch” from your 
interviewers. Which aspects of your pitch bear repeating for future interviews when similar 
behaviors across different settings produce a wide distribution of outcomes? This example 
encapsulates the inherent difficulty of accurately linking outcomes to specific actions, particularly 
when the causal structure of the world is unknown and decision-irrelevant outcomes also occur in 
close temporal proximity. In such scenarios, humans and animals are thought to group action-
outcome contingencies together based on causal cues that reflect states in the environment, 
allowing outcomes to be selectively linked to specific states (Collins & Frank, 2013; Gershman, 
Norman, & Niv, 2015). However, because learners have yet to discover the underlying generative 
structure of outcomes, and because learning and memory systems are fallible, outcomes can be 
misattributed and spread to irrelevant states—a challenge known as the structural credit 
assignment problem (Hamid, Frank, & Moore, 2021; Sutton, 1984). In these cases, information 
gets smeared in memory (Vaidya & Fellows, 2016) which can result in overgeneralization. Despite 
this known learning challenge (Sutton, 1984), conventional reinforcement learning (RL) 
algorithms applied to human behavior typically assume perfect credit attribution for each outcome 
observed. Thus, an open question is how does the human brain successfully bind observed 
outcomes to the appropriate causal state to solve the credit assignment problem? 
 
Non-human animal research hints that the prefrontal cortex (PFC) might play an integral role in 
credit assignment by binding state and action-value representations (Asaad, Lauro, Perge, & 
Eskandar, 2017), which could then be reinforced through midbrain dopaminergic signals to 
selectively gate reward attribution (O'Reilly & Frank, 2006). Tracking state-contingent outcome 
history would also be critical to properly assigning credit, which is believed to be governed by the 
lateral orbitofrontal cortex (lOFC; Chau et al., 2015; Jocham et al., 2016; Walton, Behrens, 
Buckley, Rudebeck, & Rushworth, 2010). Indeed, humans with lesions in the lOFC exhibit 
reduced state-contingent reward learning (Noonan, Chau, Rushworth, & Fellows, 2017) and 
display a greater tendency to misattribute rewards to irrelevant causal factors (Vaidya & Fellows, 
2016). More recent work shows that the medial PFC and lOFC jointly track latent states (Schuck, 
Cai, Wilson, & Niv, 2016) by leveraging surprise signals (Nassar, McGuire, Ritz, & Kable, 2019), 
allowing for credit assignment to be performed for both experienced (Akaishi, Kolling, Brown, & 
Rushworth, 2016) and unobserved outcomes (Boorman, Witkowski, Zhang, & Park, 2021; 
Witkowski, Park, & Boorman, 2022).  
 
While prior work across species suggests that the PFC is involved in tracking latent states, it is 
currently not known whether the configuration of neural patterns encoding causal cues reflect 
distinct forms of learning. For example, unlike an eligibility trace, it is possible that learners 
actively represent task-relevant states during learning, enabling selective binding of outcomes to 
states in memory.  By allowing temporally disparate actions and outcomes to be neurally bound to 
the relevant state identity, these sustained neural patterns may support increased discrimination 
between cue-specific decision policies. If this were the case, the success of credit assignment may 
be contingent on the structure and fidelity—i.e., degree of distinctiveness and consistency of each 
representation over time—of state representations in the PFC. Thus, to effectively guide credit 
assignment, a distinct and persistent neural code representing the current state should emerge both 
during choice and when feedback is delivered. Failures to properly encode high fidelity state 
identities during both choice or feedback should therefore result in increased misattribution and 
credit spreading.  
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In the current study we leverage a computational neuroimaging framework by combining RL 
models with representational similarity analysis (RSA) to investigate whether distinct forms of 
credit assignment can be discerned from neural patterns in the PFC. Our modeling framework 
allows us to estimate the precision of credit assignment from behavior, while RSA allows us to 
directly measure the content and fidelity of evoked neural state representations. We then link the 
fidelity of these neural representations during choice and feedback to how well an individual 
assigns credit across different contexts.  For example, during social situations humans are often 
able to exploit social feedback to quickly infer latent structure (Lamba, Frank, & FeldmanHall, 
2020; Lau, Gershman, & Cikara, 2020; Park, Miller, & Boorman, 2021; van Baar, Nassar, Deng, 
& FeldmanHall, 2022), which may allow credit to be assigned more selectively to specific 
individuals. Alternatively, when learning in less familiar environments with an unknown causal 
structure (e.g., gambling) learners may assign credit less precisely. We leverage these potential 
differences to evaluate whether the brain adaptively adjusts the fidelity of state representations 
across contexts to mediate the selectivity of causal learning.  
 
Participants played an iterative, multiplayer social learning task which requires participants to 
distinguish between trustworthy and untrustworthy partners when making strategic monetary 
decisions, as well as a matched nonsocial gambling task. We developed a RL algorithm to capture 
how precisely outcomes are attributed to specific states, which in our task are denoted by distinct 
stimulus’ identities (i.e., partners and bandits)—observing that different learning profiles are due 
to how accurately individuals assign credit. Furthermore, some participants consistently spread 
credit across states, particularly in the bandit task, and when receiving negative feedback. 
Multivariate neural patterns in prefrontal regions, including the lOFC and mPFC, encode state 
representations, but do so less precisely in those who spread credit. In contrast, high-fidelity state 
representations were associated with greater task earnings and more precise credit assignment 
during choice. Neural state representations share a common geometry across choice and feedback, 
signifying a persistent neural code indexing state identity. 



 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. A. Social and bandit tasks. Participants played 15 trials with each partner/bandit while in 
the scanner. On each trial, participants were paired with one of the four stimuli (partner/bandit) 
and given $10 to invest using a 5-button response box to indicate their investment in $2.50 
increments. The monetary investment was then quadrupled, and partners/bandits returned 
anywhere from 0%-50% of the money received, allowing for the possibility to double one’s 
earnings, lose the full investment, or any outcome in between. B. Task reward structure. Stimuli 
were randomly assigned to respond with fixed reward rates generated from one of four outcome 
distributions. Each stimulus deterministically returned less than the participant initially invested 
(low), more (high), an amount close to the initial investment (neutral), or a random amount. C. 
Task event sequence. Participants were given up to 3 seconds to indicate their choice, after which 
they experienced a jittered inter-stimulus delay. The returned investment was then displayed on 
the screen for a fixed 2 second duration. D. Within-task stimulus presentation. Trials were 
randomly interleaved such that interactions with each stimulus could occur anywhere from 1 to 
15 trials apart, allowing us to probe learning effects from relevant versus temporally adjacent 
irrelevant outcomes. 
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Results 

Humans are faster to learn payoff maximizing strategies in the social domain. Participants  
(N = 28) completed 60 trials of the Trust Game and a matched bandit task (order counterbalanced), 
while undergoing functional neuroimaging (fMRI). Participants made a series of monetary 
decisions with partners and bandits that varied in their reward rate (Fig. 1, A to D). Learning 
success was evaluated by maximizing monetary gains by investing the full $10 with the high return 
stimulus and minimizing monetary losses by investing $0 with the low return stimulus. Despite 
being perfectly matched across social and nonsocial conditions, participants invested more money 
with the high return social partner compared to the bandit (mean social investment: $7.12; mean 
bandit investment: $6.43; t = -3.57, p < .001; Fig. 2A) and less money with the low return partner 
vs. bandit (mean social investment: $1.71; mean bandit investment: $2.71; t = 5.69, p < .001), with 
no differences in mean investments for the neutral or random stimuli across tasks (all Ps > .1). 

Investments are influenced by history of relevant and irrelevant prior outcomes. To shed light 
on the credit assignment problem, we used a series of time-lagged regression models to examine 
how participants use relevant and irrelevant outcomes to guide learning. We paired each stimulus 
with its previous outcome and modeled the effect of three stimulus-matched (i.e., relevant) prior 
interactions on current investments (Fig. 1D). We observed that the most recently experienced 
relevant outcome exerted the largest effect on investments (significant difference between slopes 
at t-1 vs. t-2: t = -4.98, p < .001; Fig. 2B), while also exerting a stronger effect for social partners, 
compared to the prior outcome of a bandit (a significant effect at t-1 in which slopes were larger 
for the social vs. bandit task: t = 3.19, p = .004; Fig. 2B). To investigate whether temporally 
adjacent but irrelevant outcome history biased decisions, we yoked each investment to the 
immediately preceding outcome, irrespective of its identity. Although these outcomes should not 
inform choices on the current trial given the generative task structure, we observed that recent 
outcomes (mean slope from t-1 through t-3) influenced decisions to gamble with bandits (t = 1.83, 
p = 0.039; Fig. 2B), whereas recent irrelevant outcomes were anticorrelated with choices in the 
social task (t = -2.73, p = 0.011), indicating that feedback from a partner in the social domain was 
not attributed to other partners, and these task differences in using irrelevant outcome history to 
guide investments were significant (t = 3.42, p < .001; Fig. 2B). We also found a valence-
dependent effect of outcome history on learning. Across tasks, prior relevant outcomes that were 
rewarding exerted a stronger influence on investments than losses (significant difference between 
slopes for gains versus losses; t = -4.27, p < .001; Fig. 2C). In contrast, immediately preceding 
irrelevant losses disproportionately impacted decisions compared to gains (t = 2.21, p = .029; Fig. 
2C), indicating that outcome misattribution is, in part, valence-dependent. Put simply, learning 
from relevant outcomes was asymmetrically driven by gains, whereas outcome misattribution 
stemmed disproportionately from losses. 
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Fig. 2. A. Learning curves from social and bandit tasks. Predicted investments over trials 
computed from fixed-effects regression model show faster learning in the social task. Shaded gray 
regions correspond to the standard error of the mean of the regression line. B. Effect of relevant 
and irrelevant outcome history on choice. Model terms show increased learning from the most 
recent relevant outcome in the social task and an increased effect of irrelevant outcomes on 
investments in the bandit task. The box-length denotes the standard error of the mean, and the 
black line corresponds to the mean beta estimate for the lag term. C. Effect of valence-dependent 
outcome history on choices. Relevant prior gains compared to losses exerted a greater influence 
on investments. D. Correlation matrix of relevant and irrelevant outcomes on investments for a 
prototypical participant. The participant shows a strong pattern of learning exclusively from 
relevant outcomes in the social task but applies irrelevant outcomes to learning in the bandit task. 
Asterisks (*,**,***) denote p < .05, p < .01, p < .001, respectively.  
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Modeling credit assignment captures domain and valence-dependent learning asymmetries. 
Given that we observed asymmetrical learning profiles across domains and outcome valence, we 
probed whether these divergent learning profiles were due to differences in successfully assigning 
credit. Prior work suggests that interference effects (e.g., the influence of irrelevant outcomes), 
can emerge through lapses in attention and working memory that cause forgetting between task-
relevant events (Collins & Frank, 2012), and through misattribution of outcomes to irrelevant 
causes (Vaidya & Fellows, 2016). We used model comparison to evaluate the relative 
contributions of these factors to task performance.  
 
We implemented RL using a continuous choice, logistic function Q-learning algorithm with 
valence-dependent learning rates (see Methods). Our model set included: 1) a base model in which 
learning was perfectly assigned to the appropriate states, 2) a credit assignment model that includes 
a parameter controlling the degree to which outcomes affect the Q-value of irrelevant states, 3) a 
two parameter credit assignment model in which ca parameters were fit separately for positive 
versus negative prediction errors (PEs; v-ca model), and 4) a model in which learned values decay 
incrementally on each trial to capture forgetting. Behavior was best fit by the credit assignment 
model with valenced ca parameters (v-ca) in both the social and bandit task (see Methods and 
Supplement for model comparison). Consistent with the analyses above, our model reveals that 
people assigned credit more precisely to partners in the social task, and spread credit more diffusely 
across bandits in the gambling task (social task mean ca estimate = 0.74; bandit task mean ca 
estimate = 0.54; F = 10.67,  p = .002; Fig. 3B)—an effect that was heightened for gains compared 
to losses (F = 4.72, p = .033; Fig. 3C). Thus, our best fitting model revealed that learning 
differences were not attributed to forgetting but instead were linked to credit assignment errors.  
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Fig. 3. A. Schematic of credit assignment and spreading mechanisms. In a perfect credit 
assignment scenario (left side), PEs only update the expected value of the current state. A resulting 
credit matrix showing how credit assignment impacts the overall similarity between states shows 
that credit assignment values closer to 1 (perfect credit assignment) would result in no credit 
spreading among other states (1-ca), therefore allowing for increased differentiation in the state 
space. Conversely, in a credit-spreading scenario (right side), PEs are used update the expected 
value of the current state and all other states. A credit matrix would therefore predict higher off 
diagonal terms (1-ca values indicating complete spreading of outcomes across states), resulting 
in less differentiation between states. B. Credit assignment parameter estimates across social and 
bandit tasks. Mean credit assignment fits show more accurate credit assignment in the social task 
and increased spreading in the bandit task. Purple dots show individual parameter estimates and 
error bars denote the standard error of the mean. C. Valenced credit assignment parameter 
estimates. Parameter fits from our valenced ca model show more precise credit assignment for 
gains (ca-pos) and more spreading for losses (ca-neg). 
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Credit assignment predicts the fidelity of state representation during choice. Identifying and 
characterizing the neural circuitry supporting successful credit assignment compared to credit 
spreading can further clarify how this mechanism is precisely deployed. We test the prediction that 
credit assignment requires a high fidelity (i.e., distinct, and consistent) neural representation of a 
stimulus’ identity during choice, which should in theory support retrieval of the state-specific 
decision policy. Using a whole brain searchlight, we extracted single trial coefficients of the neural 
pattern on each trial and for each stimulus to create a neural representational dissimilarity matrix 
(RDM), separately for choice and feedback (Fig. 4A; see Methods).  We then computed the 
correlation distance between each searchlight RDM and our state identity hypothesis matrix, 
controlling for additional regressors in regions of interest (ROIs; separate ROIs constructed from 
choice and feedback searchlights) that survived correction for multiple comparisons (Fig. 4B; see 
Methods). This enabled us to evaluate the degree to which neural patterns differed across identities, 
while also measuring the extent to which neural patterns were consistent across trials, thus serving 
as a high-fidelity “stamp” of the stimulus’ identity.  
 
Neural patterns in a constellation of brain regions including the mPFC, lOFC, and mOFC met basic 
criteria for providing state representations (statistically significant beta coefficients of the identity 
RDM; Fig. 5B: see Supplement for full list of ROIs and their coordinates) at the time of choice. 
Within these regions, stimulus identity was more strongly encoded in the social vs. bandit task 
across ROIs (social task mean b = 0.019; bandit task mean b = 0.012; t = -3.64, p < .001; Fig. 5B), 
consistent with the findings from our model. There was also a positive relationship between an 
individual’s mean ca parameter estimates and the strength of the stimulus identity representation 
in the PFC ROIs across both tasks (t  = 3.38, p < .001; Fig. 5D) which did not depend on outcome 
valence (ca positive: t = 3.26, p = 0.0014; ca negative: t = 2.50, p = 0.014)—revealing that 
individuals who assigned credit more selectively to the relevant stimulus identity also had more 
consistent and distinct neural representations of it. Furthermore, the more money earned in the 
task, the more robust these stimulus representations were in the PFC ROIs in both tasks (t = 4.14, 
p < .001).  These results accord with the prediction that the fidelity of state representations in the 
PFC during choice control the precision of credit assignment by supporting increased 
differentiation between state-specific decision policies.  
 
 
 
 
 
 



 10 

 
 
 
 
 
 
 
 

 
 

 

 
Fig. 4. A. Conceptual depiction of RSA methods with whole brain searchlight. Multivoxel patterns 
were extracted for all trials and reorganized into a correlation distance (1-r) matrix with trials 
nested within stimulus identities for each task. State representation was evaluated separately for 
choice and feedback. B. Regression approach estimating state representation in neural ROIs, 
controlling for expected value (Q) and trial autocorrelation.  
 
Reward enhances encoding of state representations during feedback. At the time of feedback, 
a stimulus’ identity must be sufficiently encoded so that outcomes can be linked to the appropriate 
prior action. Using our searchlight approach, we identified a suite of regions providing state 
representations during feedback (Fig. 5C). We observed stronger identity representations in the 
social task uniquely in the mPFC (t = -2.41, p = 0.023; the fidelity of state representations did not 
differ across tasks in any additional ROIs). We then examined whether positive vs. negative PEs 
differentially modulate the strength of stimulus-encoding during feedback, by estimating the 
strength of stimulus identity encoding within our prefrontal ROIs separately for positive and 
negative PE trials for each participant (Methods). Across tasks we observed stronger stimulus 
encoding during positive vs. negative PE trials in the mPFC and lOFC (t = 3.25, p < .0013; Fig. 
5E), an effect that was significantly more robust in the social compared to bandit task (t = -2.71, p 
= 0.008). Together, this suggests that valence asymmetries in learning emerge because reward 
enhances the strength of state encoding in the PFC, especially in social contexts.  
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Fig. 5. A. Task-summed group-level t-map of state representation during choice and feedback; 
image is thresholded at the cluster-level (PFWE < .05) and at peak level (p < .0001). B. Beta 
estimates of state representation across ROIs identified from choice phase searchlight, 
disaggregated by social and bandit tasks, indicate stronger state representation in the social task 
across ROIs. Individual asterisks denote a significant within-subject effect for the specified ROI. 
C. State representation estimates in ROIs from feedback searchlight. Task differences only emerge 
in the mPFC. D. Predictive association between individual credit assignment parameter estimates 
and the fidelity of state representation in mPFC, lPFC, and mOFC during choice. Across both 
social and bandit tasks, credit assignment predicts the strength of state representation observed 
within prefrontal ROIs shown in panel B. E. Effect of PE valence on state encoding in the PFC 
during feedback. Positively valenced PEs were associated with higher-fidelity state 
representations across PFC ROIs, particularly in the social task.  
 
Successful credit assignment hinges on shared representational geometry between choice and 
feedback. How is information from choice and feedback integrated to support learning? We 
consider the possibility that credit assignment is achieved by neurally binding outcomes to states, 
which may occur by matching identity representations from the last relevant outcome to the next 
relevant choice—potentially in the mPFC and lPFC given their observed involvement. Greater 
alignment of neural representations across choice and feedback could preserve a common neural 
code of the state identity, supporting increased credit assignment precision. To examine the shared 
representational structure between these timepoints and the extent to which increased alignment 
reflects a common state identity representation, we identified conjunction ROIs from voxels that 
survived permutation testing in both choice and feedback searchlight analyses (Fig. 6, A to B). We 
then computed the degree of neural pattern similarity between choice and feedback representations 
in these ROIs—all localized to the PFC—and evaluated the degree to which the shared geometry 
preserved information about the stimulus’ identity (Methods). Across both tasks, we observed a 
significant positive relationship between an individual’s credit assignment precision (ca 
parameters) and the consistency of their stimulus representations across both timepoints in the 
mPFC and lPFC (t = 2.17, p = .033; Fig. 6C), an effect that was selectively enhanced for gains but 
not losses (t = 3.48, p < .001). Thus, the precision of credit assignment, particularly for rewarding 
outcomes, was strongly linked to increased neural binding between feedback and choice —a 
process that is supported by shared geometry of state representations across distinct phases of 
learning.  
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Fig. 6. A. Conceptual depiction of cross-timepoint RSA. For each participant, cross-timepoint 
matrices were constructed as the correlation distance between even and odd trial neural RDMs 
(Methods). Cross-timepoint cells from the matrix were selected and then correlated with a cross-
timepoint identity matrix to estimate the degree to which the shared structure within the neural 
patterns across choice and feedback reflected a stimulus’ identity. B. Task-summed group-level t-
maps displaying results of conjunction contrasts (Methods). Group-level image is thresholded at 
the cluster-level (PFWE < .05) and at peak level (p < .0001). C. Predictive association between 
individual credit assignment estimates and the consistency of identity representational structure 
in mPFC and lOFC (i.e., conjunction ROIs) across choice and feedback. * Denotes the effect of 
ca on the pooled estimate of shared state representation across ROIs (p < .05).  
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Discussion 
 
Adaptable learning systems, whether human, animal, or artificial intelligence, must be able to 
exploit causal structure by differentiating between an array of spatial and temporal cues, allowing 
learners to balance between behavioral flexibility and specificity (Asaad et al., 2017; Soto, 
Gershman, & Niv, 2014; Tenenbaum, Kemp, Griffiths, & Goodman, 2011; Walton et al., 2010). 
Structural credit assignment in particular, enables learners to integrate these contingencies into a 
set of learned decision policies that are flexibly recruited in response to predictive features and 
cues in the environment (O'Reilly & Frank, 2006; Sutton, 1984). Here we show how humans 
achieve successful structural credit assignment. First, people are more accurate when attributing 
outcomes to other people than they are to bandits, an effect that is enhanced for gains and 
attenuated for losses. In addition, our study reveals a simple neural mechanism for implementing 
credit assignment. State representations must be sufficiently encoded during feedback, and we find 
that this process is strengthened by gains. During choice, differences in learning are expressed by 
the fidelity of these state representations, consistent with the prediction that high fidelity state 
representations support increased state discrimination and improved learning specificity. This 
functional division of labor and coordination during distinct phases of learning aligns with our 
finding that the degree of shared geometry in state representations in the PFC predicts how 
precisely participants assign credit. Taken together, we provide novel evidence that the PFC serves 
as a hub for credit assignment by leveraging reward signals and organizing state representations 
into a shared neural code, allowing for the efficient transfer of credit from feedback to subsequent 
choice. Our key findings converge with prior work demonstrating that lOFC and mPFC track latent 
states (Schuck et al., 2016), particularly those that govern the structure of rewards so that humans 
can respond flexibly and adaptively to shifting environmental demands (Jocham et al., 2016; 
Nassar et al., 2019; Witkowski et al., 2022).  
 
We also observed that outcome valence asymmetrically shapes the specificity of assigning credit, 
which results in more accurate outcome attribution for gains and increased credit spreading for 
losses. While past studies offer insight into credit assignment for rewards specifically (Asaad et 
al., 2017; Hamid et al., 2021; Jocham et al., 2016; Walton et al., 2010), no studies that we are 
aware of have documented asymmetrical effects of PE valence driving the precision of credit 
assignment. Thus, these results offer an interesting parallel to existing stimulus generalization 
theories. Prior work using classical conditioning paradigms, in which a neutral stimulus is paired 
with an aversive outcome, shows that the conditioned response is also evoked by novel stimuli 
(Dunsmoor & Paz, 2015; Hull, 1943; Schechtman, Laufer, & Paz, 2010). Transfer effects to a new 
stimulus follows a generalization gradient, in which the experienced intensity of the prior aversive 
outcome predicts increased threat generalization (Dunsmoor, Kroes, Braren, & Phelps, 2017; 
Lissek et al., 2005), and greater perceptual generalization (Davis, Walker, Miles, & Grillon, 2010; 
FeldmanHall et al., 2018). Although our paradigm articulates generalization through credit 
spreading mechanisms, from a signal detection standpoint, these findings undoubtedly dovetail 
with that notion that it is ‘better to be safe than sorry’ in the aversive domain (Dunsmoor & Paz, 
2015). This may help to explain why increased credit spreading of negative PEs across irrelevant 
cues can become pathological and maladaptive, offering potential inroads into understanding the 
etiology of generalized anxiety disorders. 
 



 15 

While this work unveils a generalizable computational and neural mechanism for structural credit 
assignment, there are a number of unanswered questions that future work can help address. In 
particular, valence-asymmetric credit assignment effects may have interesting mappings onto 
dopamine modulation in the striatum and amygdala. Recent work in mice finds that wave-like 
dopamine signals from the dorsal striatum communicate when successful actions performed during 
instrumental learning are necessary for performance, offering insight into the underlying 
neuromodulatory dynamics of credit assignment in the reward domain (Hamid et al., 2021). 
Conversely, prior work suggests that dopamine in the amygdala gates the selectivity of an acquired 
threat response, whereas inhibition of amygdala dopamine receptors is linked to threat 
overgeneralization (De Bundel et al., 2016). Future work should consider how midbrain dopamine 
modulation in the striatum and amygdala mechanistically impacts the specificity of downstream 
state representations. Notably, our whole brain searchlight also picked up state representations in 
other prominent cortical networks, such as the control network (lateral parietal, anterior cingulate, 
and dorsal lateral prefrontal regions), and may accord with the possibility that distinct functional 
networks encode abstract state representations that vary only in format to optimize for differing 
task demands (Vaidya & Badre, 2022). Future work could consider how prefrontal and control 
networks interact during successful credit assignment, particularly when abstract state 
representations are required to perform complex sequences of actions. To summarize, our results 
identify a simple and domain-general neural mechanism for credit assignment in which outcomes 
and states are temporally bound together in the PFC, revealing a biologically grounded model for 
how humans assign credit to causal cues encountered in the world. How this mechanism 
coordinates with other known neural systems and deviates in psychiatric disorders has yet to be 
uncovered.  
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Methods 
 
Participants. Data was collected from 30 right-handed adults (ages 21-36; mean age = 23.5, Nfemale 
= 16) in the Providence, Rhode Island area. Our study protocol was approved by Brown 
University’s Institutional Review Board (Protocol #1607001555) and all participants indicated 
informed consent before completing the social and the bandit tasks in the scanner. After all fMRI 
preprocessing steps were completed, two participants were removed from the final sample due a 
high degree of motion artifacts (movement > 3mm). All participants received monetary 
compensation ($15/hour) and additional performance-based bonus payment of up to $20.  
 
Instructions and stimulus presentation. Prior to scanning, all participants were given 
instructions for the social and bandit tasks and instruction ordering was counterbalanced depending 
on which task participants completed first in the scanner. For the social task, participants were told 
they would see the faces of previous participants who had already indicated the proportion of the 
investment they wished to return and who had been photographed prior to leaving their session. In 
reality, each of the four face stimuli were drawn from the MR2 database (Strohminger et al., 2016). 
All face stimuli included in our task were prejudged to be equivalent on trustworthiness and 
attractiveness dimensions by independent raters (Strohminger et al., 2016). Slot machine stimuli 
varied by visually distinct colors (purple, blue, yellow, and orange). 
 
For each task, participants were required to pass a basic comprehension check to ensure that they 
understood the payoff structure of each game. Stimuli were presented using Psychtoolbox in 
MATLAB 2017a. Each trial was designed to elapse over a 16 second duration. The trial was 
initiated with a choice phase with a 3-second response window in which participants indicated 
their investment using a 5-button response box (options: $0, $2.50, $5.00, $7.50, $10.00). After 
participants keyed in their response, a jittered interstimulus interval (ITI), randomly distributed 
between 1-5 seconds, reminded participants of their investment. The outcome was then presented 
for a fixed 2-second duration, following by an additional ITI, filled with however many seconds 
remained for the full 16 second trial duration (between 6-13 seconds). If participants failed to 
indicate their investment within the 3-second response window, the investment was considered $0, 
and a missed trial prompt appeared during the ITI. Missed trials were omitted from all behavioral 
and RSA analyses. Stimulus ordering was randomly interleaved, and therefore consecutive 
presentations of the same stimulus could occur anywhere from 1 to 15 trials apart following a 
right-skewed distribution, such that most consecutive stimulus interactions occurred within 1-5 
trials. 
 
Reward structure. Each stimulus in the social and bandit tasks was randomly assigned to follow 
one of four reward distributions, such that stimulus identities were counterbalanced across 
different payoff structures. The high reward stimulus always returned more than the participant 
initially invested and thus always resulted in a net gain, whereas the low reward stimulus always 
returned a lower amount resulting in a net loss. Neutral and random stimuli were designed to return 
a roughly equivalent amount and served as a control for outcome valence, allowing us to examine 
outcome attribution precision with stimuli that resulted in net gains and losses with equal 
frequency. Neutral and random stimuli only differed in terms of their return variance (i.e., the 
extremity of gains and losses). Rather than truly sampling from a payoff distribution which could 
have resulted in vastly different observed outcomes across participants and tasks (e.g., observing 
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a consistent string of gains or losses on the extreme end of the distribution simply due to chance), 
we preselected the return rates so that the full range of the distribution was sampled from. We then 
applied these preselected return rates for all participants and in each task but allowed their ordering 
to be randomized across trials. Notably, although return rates were fixed, the payoff on each trial 
was still dependent on the participant’s investment (see task structure in Fig. 1).  
 
Time-lagged behavioral regression analyses. Single trial investments were modeled using a 
regression that included the monetary amount returned on previous trials at various time points 
(i.e., lags) as explanatory variables. To capture individual learning effects, we modeled investment 
data for each participant separately including both social and bandit tasks in the same linear 
regression model. Investments were modeled as a weighted sum of previous returns experienced 
on relevant trials (i.e., those with a matched stimulus) as well as irrelevant trials (i.e., those that 
immediately preceded a given investment, irrespective of stimulus identity). We fit slopes for the 
contribution of each lag term using previous returns from the nth trial back in each task (social vs. 
bandit), yielding 13 coefficients per participant (model equation below; i,t denotes each participant 
and trial, respectively).  
 

Investment(i,t) = β0 + β1,2Lag1Rel(i,t) | task + β3,4Lag2Rel(i,t) | task + β5,6Lag3Rel(i,t) | task + 
Β7,8Lag1Irrel(i,t) | task + β9,10Lag2Irrel(i,t) | task + β11,12Lag3Irrel(i,t) | task 

 
To model whether rewards vs. losses differentially impacted reward attribution, for each 
participant we separated trials into scenarios in which the previous stimulus-matched and previous 
irrelevant outcome resulted in a net gain (return > investment) or a net loss (return < investment). 
Here we considered only lag1 trials to minimize parameter tradeoffs that prevented model 
convergence, and furthermore ran four separate regression models quantifying the effects of lag1 
returns for each combination of relevant vs. irrelevant and gain vs. loss trials.  
 
Logistic Reinforcement Learning model. To better understand trial-to-trial changes in investing, 
we developed a nested set of Q-learning models to translate trial-outcomes into behavioral updates. 
Because choices in the task were both discrete and ordinal in their magnitude (choice options: $0, 
$2.50, $5.00, $7.50, $10.00) we used a logistic function to model the learned value of investing 
with each partner/bandit type based on trial and error.  
 
Model investment function. In each of our models, all choices in which the participant responded 
were included in model fitting. We initialized Q values to a prior, estimated for each participant as 
a free parameter. Predicted investments for each trial were generated from a sigmoid function that 
included parameters to account for individual investment biases (i.e., baseline differences in 
investment preferences) and the slope of the relationship between Q-values and predicted 
investments (m; Fig. M1A), where Q(t,j) reflects the Q value for investing in stimulus (i.e., 
partner/bandit) j on trial t:  

 

𝑝𝑟𝑒𝑑. 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡! =
𝑚𝑎𝑥	𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
1 +	𝑒"#(%(",$)"&'())
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To get the likelihood with which our model would produce all possible investments on a given 
trial, we assumed that the probability of a given investment would fall off according to a Gaussian 
probability density function (PDF) around the predicted investment (Fig. M1B):  
 

𝑝(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠) = 	
1

𝜎√2𝜋
𝑒
"((++	'-./)!#/-!)"01/2.'-./)!#/-!)&

45&  

 
The width of the Gaussian distribution was fixed to a value of 1 in all models, controlling the 
variability in model investments. The probability of investing—p(investment)—generated from 
the Gaussian PDF was normalized on each trial such that the total probability across investments 
was equal to 1, and the model was fit by minimizing the negative log of the sum of p(investments) 
corresponding to the actual participant investments across trials.  
 
 

 
 

 
 
 

 
 

 
 
Fig. M1. Continuous choice, logistic Q-learning algorithm. A. Impact of bias and m parameter 
estimates on predicted investments in the Q-learning model. Higher bias parameters indicate an 
increased baseline tendency to invest larger monetary amounts, whereas m parameters capture 
the degree of evidence learners require before switching investment strategies. B. Schematic of 
Gaussian density function used to convert predicted investments from continuous to discrete 
ordinal scale and to compute trial log likelihood.  
 
Modeling learning. In our base model, we implemented RL using the delta rule to compute the 
reward prediction error (𝛿) on each trial, which updated the expected value (Q) of investing with 
each partner/bandit type after each outcome observation. Error-driven learning was then scaled by 
the learning rate (𝑎): 
 

𝛿 = 	 𝑟𝑒𝑤𝑎𝑟𝑑! − 𝑄(!"6,8) 
 

	𝑄(!,8) = 𝑄(!"6,8) + 	𝑎 ∙ 𝛿	 
 
In the base model, outcomes were always attributed to the appropriate state, effectively performing 
standard model-free RL. We included additional learning rate, credit assignment, and decay 
parameters to the base model to construct a set of models that varied in complexity, and that 
provided distinct conceptual accounts of learning differences, but notably all models mapped 
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experienced outcomes to learned values to guide future choice (see Supplement for a full list of 
models tested). 
 
To capture individual differences in credit assignment vs. credit spreading we introduced a credit 
assignment parameter (ca), that quantified the degree to which observed outcomes on the current 
trial influenced the Q-value of irrelevant causes (i.e., all other partners/bandits not engaged with 
on the current trial), denoted with the index k. 
 

𝑄(!,8) = 𝑄(!"6,8) + 	𝑎 ∙ 𝛿	 ∙ 𝑐𝑎 
 

𝑄(!,9) = 𝑄(!"6,9) +	
𝑎 ∙ 𝛿	 ∙ (1 − 𝑐𝑎)

𝑛9	
 

 
To account for valence-dependent learning effects, we fit models with valenced learning rate 
parameters, in which PEs greater or less than 0 were scaled by positive or negative learning rates, 
respectively.  We also fit a model with valenced ca terms to capture valence-specific differences 
in reward attribution (i.e., whether credit assignment vs. spreading is dependent on observing better 
or worse than expected outcomes). This model was algorithmically identical to the ca model, 
except that two separate ca parameters were used to account for credit assignment on positive and 
negative PE trials, respectively.  
 
Decay models. We modeled forgetting effects using a decay model in which forgetting was 
estimated as overall decay (𝛾) of learned Q-values to a pre-existing prior between exposures to the 
current stimulus, where 𝛾 and prior were fit as additional free parameters to each participant.  
 

𝑄(!,8) = 𝑄(!"6,8) + 	𝑎 ∙ 𝛿 
  

𝑄(!,9) = 𝑄(!"6,9) + 	𝛾	 ∙ (𝑝𝑟𝑖𝑜𝑟 − 𝑄(!"6,9)) 
 
Model comparison. Model fits were then evaluated using the Akaike information criterion (AIC), 
which we computed as:  
 

𝐴𝐼𝐶 = 	−2(𝐵𝑎𝑦𝑒𝑠𝐿𝐿) − 	2(𝑛		𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
 
We performed model selection by maximizing the negative AIC and minimizing D AIC, which 
was calculated as the difference between each participant’s best-fitting model and every other 
model in the set, allowing us to evaluate model performance penalized for additional terms and 
the model fit advantage of each participant’s best-fitting model relative to the explanatory power 
of each other model in the set. Thus, the best-fitting model would ideally be able to explain each 
participant’s data approximately as well, if not better, in most instances. Model comparison was 
performed separately for social and bandit tasks (see Supplement for model performance and 
validation details).  
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MRI data acquisition. Data was acquired at the Brown University MRI Facility with the Siemens 
Prisma 3T MRI Scanner. Anatomical scans were collected using a T1-weighted sequence with 
1mm3 isotropic voxels, 1900ms TR, flip angle = 9 degrees, 160 slices/volume, 1mm slice 
thickness, for a duration of 4 minutes, 1 second. Functional scans were acquired using a T2-
weighted sequence with 3mm3 isotropic voxels, 2000ms TR, flip angle = 78 degrees, 38 
slices/volume, 3mm slice thickness. Each task was divided into 2 functional runs, each consisting 
of 246 volumes, for a duration of 8 minutes and 12 seconds. We used a bounding box with a 
forward tilt along the AC-PC axis to ensure we were imaging lateral and medial OFC.  
 
Data preprocessing. Data was preprocessed in SPM12 in the following sequence: slice-time 
correction, realignment, co-registration, segmentation, normalization, spatial smoothing. Images 
were normalized to a standard MNI template and resampled to 2mm3 voxels. For multivariate 
analyses, images were minimally smoothed using a 2mm3 smoothing kernel. RSA images 
constructed from the deconvolved time-series GLM (see below) were later smoothed using a 6mm3 

smoothing kernel for group analyses.  
 
Time-series GLM. For each participant we obtained time-series estimates of the BOLD signal by 
deconvolving the HRF using single trial regressors (Mumford & Poldrack, 2007; Ramsey et al., 
2010), concatenated across task runs. We also included separate trial regressors for choice and 
feedback onsets within each GLM (i.e., choice and feedback onsets were modeled simultaneously) 
to control for potential temporal correlations in the BOLD signal resulting from consecutive task 
events. For choice phase regressors, we modeled voxel activations during the choice duration, 
which occurred within a 3-second window. Feedback phase activations were modeled during a 
fixed 2-second duration. We included six motions regressors derived from realignment, along roll, 
pitch, yaw and x,y,z dimensions to control for motion artifact. We also included additional 
framewise displacement (FD) regressors, using a FD threshold = 1.2 to identify noisy images. We 
then regressed out noise from frames above the FD threshold, including the previous images and 
subsequent two images, based on recommendations (Power, Barnes, Snyder, Schlaggar, & 
Petersen, 2012; Power et al., 2014). 
 
Whole brain searchlight analysis. We conducted four independent searchlight analyses across 
the whole brain to measure representational dissimilarity during choice and feedback phases of the 
task, and separately for social and bandit tasks. For each participant and each task phase (choice 
and feedback), we first selected the relevant trial regressors (e.g., choice regressors for all trials in 
which the participant responded). We then constructed a 9mm radius spherical searchlight, which 
we moved along x,y,z coordinates of participant-specific brain masks (binary mask of voxels with 
sufficient accompanying BOLD activations), with a step size of 1, such that the center of the 
searchlight was placed in each voxel once.  
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We then extracted single event (choice/feedback) beta coefficients from all voxels within the 
searchlight from the relevant phase regressors modeled in our deconvolved time-series GLM and 
noise normalized the coefficients (Walther et al., 2016). Beta coefficients from each phase 
regressor were then extracted and reorganized into a voxel by trial coefficient matrix (Fig. 4A). To 
align the searchlight neural RDM with our state identity hypothesis matrix, we reorganized the 
coefficient matrix by nesting trial within each stimulus type. To obtain the searchlight RDM, we 
then computed the correlation distance (1-r) between each row and column element in the 
coefficient matrix. Correlation distance values from the lower triangle (all elements off the identity 
line) of our neural RDM were then z-transformed and correlated with the lower triangle of our z-
transformed predictors, using the following linear model to obtain a t-statistic estimating the effect 
of state identity for each searchlight (neural correlation distance ~ state identity + autocorrelation 
term). We examined the effect of the state identity and Q-value hypothesis matrices separately in 
our whole brain searchlight analyses to avoid any systematic correlations that could potentially 
emerge from predictor collinearity but allowed state identity and Q-value predictors to compete in 
our ROI analyses. The resulting first-level t-maps from the whole brain searchlights for choice and 
feedback and for each task were then spatially smoothed with a 6mm3 Gaussian smoothing kernel 
before being submitted to second-level analyses.   
 
To avoid constructing task-biased ROIs, we created summed t-maps from each participant’s social 
and bandit searchlights using SPM’s imcalc function (images created using a simple summation 
method; social t-map + bandit t-map). We then conducted second-level analyses on the task-
combined t-maps for choice and feedback phases of the task. To correct for multiple comparisons, 
we conducted non-parametric permutation testing on the second-level analyses, using a cluster-
forming threshold of p < .0001 and a null distribution based on 5000 permutations. Permutation 
testing was conducted with the SnPM package (Hayasaka & Nichols, 2003). We then created 
binary masks of all voxels in our second-level analyses that were significant at the cluster-level 
(pFWE < .05) and at the peak level (p < .0001) and used the task-combined corrected t-maps to 
identify ROIs. We used a data driven approach to identify two sets of ROIs for choice and feedback 
by extracting coefficients from statistically significant cluster peaks in corrected t-maps. We 
limited the cluster size of our ROIs to be no larger than the size our searchlight by placing a 9mm 
radius sphere at the center of the local maxima and extracted all voxels from the sphere that 
survived permutation testing. Within each ROI from our two sets chosen from choice and feedback 
searchlights, coefficients from the model were then disaggregated to independently evaluate the 
strength of state representation in the social vs. bandit task (shown in Fig. 5, B to C), which we 
computed from the following model (neural correlation distance ~ state-identity RDM + Q-value 
RDM + autocorrelation term). 
 
Valence-based RSA. For each participant, trial-level deltas (PEs) estimated from the valenced-ca 
model using the MLE optimized parameters were z-scored to control for the extremity of 
experienced gains and losses across participants, to ensure we had sufficient trials from each 
stimulus within both positive and negative valence RDMs, and to ensure a roughly equivalent 
amount of data in each neural RDM. The z-transformed PEs were then used to separate data into 
the appropriate RDM and our RSA procedure for each ROI was then separately applied for positive 
and negative RDMs and for choice and feedback phases.  
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Cross-timepoint RSA. Prior to computing the cross-timepoint correlations across task phases, we 
constructed a set of ROIs in candidate areas that were involved in state representation during both 
choice and feedback. To avoid constructing ROIs that were biased towards a particular task phase, 
we integrated task-combined t-maps (choice t-map + feedback t-map). We then masked our task 
and phase-combined image using a binary conjunction t-map of voxels that survived permutation 
testing in both our choice and feedback phase analyses, using a 9mm radius sphere centered at the 
local peaks to isolate voxels from statistically significant clusters and focusing specifically on 
voxels in the PFC. We then computed the cross-timepoint correlation within each of our 
conjunction ROIs, separately for each task.  
 
Our approach for computing the cross-timepoint correlation was to first create two data sets for 
each participant by separating the data into even and odd trials that occurred with each 
partner/bandit type (e.g., set 1: all even trials with low, high, neutral, random stimuli, set 2: all odd 
trials with low, high, neutral, random stimuli), so that representational correspondence could be 
measured across consecutive stimulus-matched trials that were temporally distanced in time (trial 
ordering was interleaved such that stimulus-matched trials were always 1-15 trials apart in the 
task; Fig. 1D).  We then constructed a neural RDM for each of our even and odd data sets, including 
choice and feedback in same matrix, and then computed the correlation distance between our even 
and odd trial neural RDMs. The resulting matrix product of even and odd RDMs allowed us to 
evaluate the shared structure of representations across task phases (the lower left and upper right 
quadrants of the cross-timepoint RDM; Fig. 6A) and across independent trials, therefore breaking 
any systematic temporal or autocorrelation signals within the neural pattern. We then correlated 
only the cross-timepoint quadrants of the matrix product with a cross-timepoint state identity 
matrix to quantify the degree of representational alignment in the neural code across choice and 
feedback timepoints that preserved the state identity. The degree of shared information in the 
neural code (quantified as Pearson correlation coefficients) was subsequently submitted to further 
regression analyses to evaluate the association between shared representational geometry and 
credit assignment precision (Fig. 6C). We constructed ROIs in the mPFC and lOFC, given that 
clusters in these regions emerged from our conjunction t-map and signaled cross-timepoint state 
encoding. 
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SUPPLEMENT 
 

Prefrontal cortex state representations shape human credit assignment 
 

Amrita Lamba, Matthew Nassar, Oriel FeldmanHall 
 

Reinforcement Learning Model  
 

Reinforcement Learning models and parameters. We built and tested a set of 6 nested RL 
models which provided differing cognitive accounts of learning and interference effects (see 
Methods). Each RL model in our final set included a subset of the parameters listed in Table S1, 
with their specific configurations noted in Table S2. To ensure adequate model identifiability for 
model comparison we verified that classification rates from the inverse confusion matrix were 
within a reasonable range (Fig. S1).  
 
Model comparison. Model comparison was performed by minimizing Δ AIC across models 
(participant’s best-fitting model AIC – comparison model AIC). Mean AIC and Δ AIC for each 
model are reported in Tables S3 to S4, respectively. As shown in Fig. S2 to S3, both the v-ca 
model (V-CA,V-LR) and the single ca-term model (V-LR,CA) better captured performance than 
the decay model, or at least equally as well in most instances. Further, the performance 
advantage of the V-CA model over the single term CA model was directly dependent on the 
degree of ca asymmetry between gains and losses (Fig. S3, D), allowing us to further explain 
valence-asymmetric credit assignment effects. As shown in the MLE predictive check in Fig. S4 
and parameter recovery plots in Fig. S6, the v-ca model was able to capture task performance 
and parameters were reliably estimated. The distribution of parameter estimates for the v-ca 
model are provided in Fig. S5.  
 
ROI coordinates  
 
Regions of Interest. A full description of our ROI identification and construction process is 
detailed in the Methods section. MNI coordinates, estimated effect size, and cluster size for 
each ROI from the task-summed t-maps are reported for each phase in Tables S5 to S7. All peak 
coordinates were cross-referenced with Neurosynth and the cluster mass for each ROI was 
restricted to a 9mm-radius spherical searchlight size to prevent ROIs from spanning multiple 
anatomical boundaries. All reported effects below survived correction for multiple comparisons 
using our permutation testing procedure (Methods).   
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Model 
Parameter 

Parameter Description Upper-bound  Lower-bound 

bias Baseline investment 
tendencies. 

2.0 – Baseline 
tendency to invest 
full amount.  

0 – Baseline 
tendency to invest 
minimal amount. 

m Slope of logistic function 
associating trial Q-value 
and predicted investments. 

2.0 – Little 
evidence needed 
to shift investment 
strategies.  

0.2 – More 
evidence required 
before shifting 
strategies.  

prior Bias parameter on trial 1 
before observing any 
outcomes. 

2.0 – Invested fully 
on trial 1.  

0 – Invested 
minimally on trial 
1.  

a Learning rate quantifying 
degree of update to state  
Q-value from PE term.  

1.0 – PEs 
maximally 
updated state  
Q-value.  

0 – No influence of 
PEs on state Q-
value. 

apos Learning rate for gains. 1.0 – PEs > 0 
maximally updated 
state Q-value. 

0 – PEs > 0 did not 
update state Q-
value. 

aneg Learning rate for losses. 1.0 – PEs < 0 
maximally updated 
state Q-value. 

0 – PEs < 0 did not 
update state Q-
value. 

ca Credit assignment 
parameter capturing 
spread of credit across 
states.  

1.0 – PEs only 
update Q-value of 
relevant state.  

0 – PEs update the  
Q-value of all 
states.  

capos Credit assignment for 
gains. 

1.0 – PEs > 0 only 
update the Q-
value of the 
relevant state. 

0 – PEs > 0 update 
the Q-value of all 
states. 

caneg Credit assignment for 
losses.  

1.0 – PEs < 0 only 
update the Q-
value of the 
relevant state. 

0 – PEs < 0 update 
the Q-value of all 
states. 

decay Degree of forgetting  1.0 – Complete 
decay of Q-values. 
 

0 – No forgetting.  
 

 
Table S1: Logistic Q-learning algorithm parameters indicating model behavior at upper and 
lower bounds.   
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Model 
No. 

Model bias m prior a apos aneg decay ca capos caneg No. 
params 

1 Baseline × ×  ×       3 
2 Decay × × × ×   ×    5 
3 V-LR, Decay × × ×  × × ×    6 
4 V-LR, CA × × ×  × ×  ×   6 
5 V-CA × × × ×     × × 6 
6 V-CA, V-LR × × ×  × ×   × × 7 

 
 
Table S2: List of RL Models included in model comparison, including their respective free 
parameters indicated with the ×. V denotes valenced terms for either the learning rate (LR) or 
credit assignment (CA) parameters in the model.  
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Model 
No 

Model Task Mean AIC SE 

1 Baseline 
 

Social 
Bandit 

-324.93 
-349.11 

30.84 
21.00 

2 Decay 
 

Social 
Bandit 

-232.06 
-285.99 

19.51 
17.75 

3 V-LR, Decay 
 

Social 
Bandit 

-203.83 
-277.41 

16.68 
18.55 

4 V-LR, CA 
 

Social 
Bandit 

-202.68 
-259.47 

17.00 
17.30 

5 V-CA 
 

Social 
Bandit 

-208.54 
-273.25 

16.75 
17.93 

6 V-CA, V-LR 
 

Social 
Bandit 

-200.18 
-258.25 

16.65 
16.99 

 
Table S3: Mean AIC and SE for each model. Mean AIC for V-CA, V-LR was the max in the set. 
Mean values are plotted below in Fig. S2.   
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Model 
No 

Model Task Δ AIC SE 

1 Baseline 
 

Social 
Bandit 

127.66 
92.85 

25.17 
14.98 

2 Decay 
 

Social 
Bandit 

34.79 
29.73 

9.35 
5.28 

3 V-LR, Decay 
 

Social 
Bandit 

6.56 
21.16 

4.77 
5.23 

4 V-LR, CA 
 

Social 
Bandit 

5.40 
3.32 

4.94 
4.79 

5 V-CA 
 

Social 
Bandit 

11.26 
16.99 

3.32 
5.71 

6 V-CA, V-LR 
 

Social 
Bandit 

2.91 
2.00 

4.88 
4.56 

 
 
Table S4: Model Comparison. Model Comparison was performed by minimizing Δ AIC, which 
was computed as the difference between each participants best-fitting model and each model in 
the set (see Methods). Δ AIC was the lowest for the V-CA, V-LR model, indicating that the model 
captured the behavioral data better than other models in the set, and in instances in which a 
participant’s data was better fit by another model the V-CA, V-LR model could explain the data 
equally as well.  Δ AIC with individual points is plotted below in Fig. S2.   
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Region Peak MNI Coordinates Zpeak k 
 x y z  

Parietal R 46 -54 52 5.36 331 
OFC M -4 36 -24 4.02 81 
dlPFC R 40 52 26 4.81 254 
mPFC 2 54 -2 5.56 321 

Parietal L -58 -50 36 4.78 292 
ACC -2 10 42 5.14 291 

OFC R 42 52 6 4.70 260 
OFC L -40 40 -4 4.71 253 

dlPFC L -42 8 40 4.36 267 
 
Table S5. Choice Phase ROI coordinates.   
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Region Peak MNI Coordinates Zpeak k 
 x y z   

Parietal R 48 -38 54 6.45 388 
mPFC 0 52 22 5.32 388 

dlPFC R 42 28 28 5.50 389 
Parietal L -38 -38 54 5.16 377 

OFC R 26 56 -10 4.72 238 
dlPFC L -40 20 32 5.57 327 

Hippocampus R 40 -18 -10 4.89 213 
OFC L -48 46 -4 5.18 275 
ACC -2 24 32 4.75 330 

OFC M 0 46 -20 4.33 142 
 
Table S6: Feedback Phase ROI coordinates.   
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Region Peak MNI Coordinates Zpeak k 
 x y z   

OFC R 32 46 -10 5.26 106 
mPFC 6 50 -2 5.94 158 

 
Table S7. Conjunction ROI coordinates.   
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Fig. S1. Model identifiability. A: Model confusion matrix. Model confusability was evaluated by 
simulating 100 participants per model. For each simulated participant, free parameters were 
randomly sampled from a uniform distribution (Table S2) and trial-to-trial investments were 
generated under the sampled parameterization. Each model was fit to each simulated 
participant using 20 iterations of gradient descent, and classification rates were computed as 
the frequency with which each participant was best fit by the correct generative model which 
we evaluated by maximizing the negative AIC (rate of winning model/true model). B: Inverse 
confusion matrix based on same data but showing the probability that each generative model 
gave rise to a given “best fitting” model.   

fit model

Ba
se

lin
e 

De
ca

y

v-
ca

De
ca

y, 
v-

LR

ca
, v

-L
R

v-
ca

, v
-L

R

Ba
se

lin
e 

De
ca

y

v-
ca

De
ca

y, 
v-

LR

ca
, v

-L
R

v-
ca

, v
-L

R

Baseline

Decay

Decay, v-LR

ca, v-LR

v-ca

v-ca, v-LR

Baseline

Decay

Decay, v-LR

ca, v-LR

v-ca

v-ca, v-LR

p( fit model | simulated model ) p( simulated model | fit model )

ledo
M detalu

mi S

l edo
M det al u

mi S
a. b. 

fit model



 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 
Fig. S2. Model performance and comparison. A: Mean AIC for each model. Error bars 
correspond to the standard error of the mean. The dotted black line shows the mean AIC for the 
V-CA, V-LR model for comparison. B: Mean Δ AIC for each model. The length of each bar shows 
the standard error of the mean, and individual points correspond to the difference between the 
AIC for each participant’s best-fitting model and the model denoted on the x-axis.  
* Denotes the model with the min Δ AIC in the set.  
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Fig. S3. Δ AIC for models of interest. A: Model fit difference between the ca model and the decay 
model with V-LR terms. The histogram shows the model fit advantage of the ca model across 
participants, in which values above 0 indicate better fits to the ca model. Notably, almost all 
participants are better fit, or are equally fit, by the ca model. B: Model fit difference between 
the v-ca model and decay model. Again, almost all participants are better fit, or are equally fit, 
by the v-ca model. C: Model fit difference between the ca and v-ca models. D: The model fit 
advantage of the v-ca model compared to the single term ca model was associated with the 
degree of credit assignment asymmetry between gains and losses.  
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Fig. S4. MLE Predictive Check. For each participant, the set of MLE-optimized parameters from 
the V-CA,V-LR model were used to simulate data from the model. Model-generated data is 
plotted above and reproduces behavioral effects.  
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Fig. S5. Distribution of parameter estimates from the v-ca model (V-CA, V-LR).  
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Fig. S6. Parameter recovery. Estimated parameters from the v-ca model could be reliably 
recovered from model-generated data from the MLE predictive check, particularly for 
parameters of interest (ca and LR).  
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