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Significance:  

For nearly a century, scientists have asked how humans learn about their worlds. Learning 

models borrowed from computer science—namely, reinforcement learning—provide an elegant 

and simple framework that showcases how reward prediction errors are used to update one’s 

knowledge about the environment. However, a fundamental question persists: what exactly is 

'reward'? This gap in knowledge is problematic, especially when we consider the multiplicity of 

social contexts where external rewards must be contextualized to gain value and meaning. We 

leverage electroencephalography to interrogate the role of emotion prediction errors—violations 

of emotional expectations—during learning. We observe distinct neural signals for reward and 

emotion prediction errors, suggesting that emotions may act as a bridge between external 

rewards and subjective value. 

 

Abstract:  

Reinforcement learning models focus on reward prediction errors (PEs) as the driver of behavior. 

However, recent evidence indicates that deviations from emotion expectations, termed affective 

PEs, play a crucial role in shaping behavior. Whether there is neural separability between emotion 

and reward signals remains unknown. We employ electroencephalography during social learning 

to investigate the neural signatures of reward and affective PEs. Behavioral results reveal that 

while affective PEs predict choices when little is known about how a partner will behave, reward 

PEs become more predictive overtime as uncertainty about a partner’s behavior diminishes. This 

functional dissociation is mirrored neurally by engagement of distinct event-related potentials. The 

FRN indexes reward PEs while the P3b tracks affective PEs. Only the P3b predicts subsequent 

choices, highlighting the mechanistic influence of affective PEs during social learning. These 

findings present evidence for a neurobiologically viable emotion learning signal that is 

distinguishable—behaviorally and neurally—from reward.  
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Introduction 

Reward prediction errors (PE)—the difference between expected and experienced reward—serve 

as the dominant mechanism for explaining how people learn to make adaptive, value-based 

decisions1-6. Reward PEs function within a reinforcement learning (RL) framework, illustrating 

how people adjust their actions based on past experiences to achieve more successful outcomes7. 

This framework has been successfully applied to explain a host of simple behaviors such as 

avoiding financial losses1 and navigating new environments8, to more complex behaviors, such as 

determining who can be trusted9.  While the term reward is frequently used to explain learning, 

the fact that ‘rewards’ in the social world are abstract, difficult to quantify, and shaped by multiple 

features of a social situation, suggests a gap between the externally ‘rewarding’ reinforcers 

encountered (e.g., money, smiles) and how the brain interprets them as value. A critical unresolved 

question thus centers around what exactly is ‘reward’ and how does the brain represent it? Here 

we examine how the human brain computes external rewards into internal value during a social 

learning paradigm.  

 

An intuitive possibility for how external reinforcers are transformed into internal value comes from 

the field of emotion. Decades of work indicate that emotions play a vital role in the decision-

making process10,11, where stress inductions12, mood inductions13 and emotion regulation14 can all 

impact choice. Indeed, several affective theories propose that emotions are the evaluation of 

external rewards, and thus possess the capacity to influence future behavior15-18. Building on this 

theory, our previous research operationalized affect within an RL framework, which led to the 

hypothesis that violations of emotion expectations—known as affective prediction errors (PEs)—

influence choice. By formally quantifying affective PEs as the difference between expected and 

experienced emotion, we observed that affective PEs exhibit an independent effect that is stronger 

than monetary reward PEs in predicting one-shot social choices19. The distinction between emotion 

and reward was further exhibited in an independent sample, where individuals at risk of depression 

demonstrated selective impaired use of affective PEs but fully intact use of reward PEs in a social 

exchange task. 

 

Although this dissociation suggests affective PEs have a central role in guiding socially adaptive 

behaviors, it remains unknown whether affective PEs also act as critical signals during trial-by-
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trial learning, where knowledge about others must be continually updated to adjust future choices. 

Additionally, there is no evidence for the separability between affective and reward PEs at the 

neural level. Neural separability—at the temporal, functional, or localization levels—between 

affective and reward PEs would be strong evidence that emotion serves as a distinct learning signal 

separate from reward, one that may transform external rewards into internal, subjective value.  

 

To test whether affective and reward PEs are critical for learning and are separable at the neural 

level, we used a repeated social exchange paradigm in conjunction with electroencephalography 

(EEG). EEG was chosen for its superior temporal resolution capable of capturing unfolding neural 

processes on the order of milliseconds. We a priori identified three potential event-related 

potentials (ERPs) known to reflect changes in EEG activity in response to feedback or reward 

processing. In particular, the feedback-related negativity (FRN) is an ERP thought to reflect the 

evaluation of surprising events20,21 and is theorized to be the neural basis of reward PE 

processing22. Additionally, the P3a and P3b are commonly linked to various aspects of feedback 

processing, including reward magnitude23, reward valence24, and rare, surprising outcomes25. 

Given the mixed evidence of how these ERPs map onto the construct of reward, we were agnostic 

as to which neural signal would preferentially index reward or affective PEs. 

 

EEG was recorded during a repeated Ultimatum Game (UG), where participants (N=41) interacted 

with three different partner types offering a range of fair to unfair monetary offers (fair, unfair, 

neutral; see Methods and Fig. 1B). The repeated nature of the UG, five trials in a row per partner, 

allowed participants to update their expectations of a partner based on the history of offers with 

that person. We included two key measurements to enhance our understanding of how rewards 

and emotions influence feedback processing and updating (Fig. 1A). First, rather than using 

computational models to infer participants’ reward expectations26,27, we asked them to report the 

amount of money they expected to receive on each trial (ranging from $0 to $10). This allowed us 

to compute trial-by-trial reward PEs as the discrepancy between the actual offer and the expected 

one. Second, participants used a 2D affect grid to predict how they thought they would feel after 

receiving an offer (affect expectation), and to express how they actually feel once the offer was 

received (affective experience)19,28. This measure captures participant’s core affect, a consciously 

accessible facet of subjective feelings that categorizes feelings into core dimensions of valence 
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(pleasurableness) and arousal (alertness/intensity). We computed affective PEs for both arousal 

and valence dimensions as the difference in participant’s expectation and experience on a trial-by-

trial basis (Fig. 1C). Together, these measurements allow us to map all three empirical PEs 

(reward, valence, and arousal) onto distinct neural EEG signatures expressed during social 

interactions (Fig. 1D).  

[Figure 1 placeholder] 

Results 
 

Reward and affective PEs have separable contributions to learning. Given our prior work 

found that valence, compared to reward PEs, exert a stronger influence on one-off decisions to 

punish norm violators19, we began by examining the marginal strength of reward, valence and 

arousal PE signals when deciding to punish in a social learning context. This additive linear mixed-

effects model (LMM) represents a strict test of our theory since each PE type competes with all 

others to explain variance during learning. Replicating our prior research, we found that both 

valence (𝛽 = −0.76 ± 0.11, 𝑧 = −6.65, 𝑃 < 0.001) and reward PEs (𝛽 = −0.67 ± 0.14, 𝑧 =

−4.75, 𝑃 < 0.001) have independent contributions when learning when to punish. That is, 

participants punished at higher rates when experiencing more unpleasantness (valence) or less 

reward than expected. Unlike our prior results, however, we observed no unique contribution of 

arousal PEs on decisions to punish (𝛽 = 0.13 ± 0.11, 𝑧 = 1.14, 𝑃 = 0.26) once valence and 

reward PEs are accounted for. 

 

To examine how the relationship between each PE type and choice changes over time, we 

interacted PE type with round number. We observe that the strength of reward and valence PEs 

change in opposite directions overtime (Table 1; Fig. 2A). Valence PEs exert the strongest 

relationship to choice on the first round when uncertainty is greatest, and significantly weakens 

over time as uncertainty about a partner’s behavior is slowly resolved. In contrast, reward PEs 

show a marginally significant interaction with round number such that they weakly predict choice 

in the beginning but become more predictive over time. Directly pitting both PE types against one 

another reveals that valence PEs have a significantly stronger impact on motivating punitive 

choices on the first round when compared to reward PEs (𝛽 coefficient test: z = -1.70, P = 0.04), 

while reward PEs have a stronger, albeit not-significant, influence on the final round, when 
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compared to valence PEs (z = 1.05, P = 0.15). This reversal reveals how valence PEs are more 

impactful early on when uncertainty is greatest. Once participants have better estimates about the 

type of offer to expect, reward PEs become more useful for informing whether to accept or reject 

an unfair offer. 

[Table 1 placeholder] 

[Figure 2 placeholder] 

 

Reward and emotion PEs indexed by separate and dissociable neural signals. We next 

investigated if each PE—reward, valence, and arousal PEs—is represented by distinct and 

separable neural architecture. We first standardized all PEs at the group level and used each PE 

type as independent variables in separate linear mixed effects regressions predicting our a priori 

ERPs of interest: the FRN, P3a, and P3b (see Methods). The FRN is known to encode both signed 

and unsigned PEs22,29, and RPE effects on the P3 component are also somewhat ambiguous on 

what they index30, potentially reflecting the magnitude of the PE rather than the valence23. Given 

the lack of clarity around what exactly these ERPs index, we first tested whether absolute or signed 

PEs predicted the ERPs of interests, and found more evidence for absolute, compared to signed, 

PEs (see Supplement). Using the absolute value of each PE as the predictor, we found that trial-

by-trial FRN amplitudes were uniquely predicted by reward PEs (𝛽 = −0.23 ± 0.07, 𝑡 =

−3.17, 𝑃 = 0.003) but not valence (𝛽 = 0.06 ± 0.07, 𝑡 = 0.91, 𝑃 = 0.36) or arousal PEs (𝛽 =

0.04 ± 0.08, 𝑡 = 0.44, 𝑃 = 0.67; Fig. 3). In contrast, trial-by-trial P3b amplitudes were only 

predicted by valence PEs (𝛽 = 0.06 ± 0.02, 𝑡 = 3.98, 𝑃 < 0.001), but not arousal (𝛽 =

−0.001 ± 0.01, 𝑡 = −0.71, 𝑃 = 0.48) or reward PEs (𝛽 = 0.03 ± 0.02, 𝑡 = 1.37, 𝑃 =

0.18; 𝐹𝑖𝑔. 3), and a beta-coefficient test showed that the valence PE effect was marginally greater 

than the reward PE (𝑍 = 1.44, 𝑃 = 0.07). Finally, trial-by-trial P3a amplitudes were only weakly 

linked to arousal PEs (𝛽 = 0.04 ± 0.02, 𝑡 = 1.90, 𝑃 = 0.07), and not associated with either 

valence (𝛽 = 0.01 ± 0.02, 𝑡 = 0.18, 𝑃 = 0.86) or reward PEs (𝛽 = 0.04 ± 0.02, 𝑡 = 1.69, 𝑃 =

0.10; Fig. 3; see supplement for an exploratory model showing that the P3a is best tracked by offer 

extremity). To ensure that we were capturing all possible electrophysiological signatures of 

reward, valence, and arousal PEs (which we might have missed with a pure a priori ERP approach) 

we additionally employed a data-driven method that does not rely on predefined signals31. Results 

from this data driven approach showed converging evidence for separate spatiotemporal clusters 
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in response to offers for reward and valence PEs (see Supplement). Taken together, these results 

are the first to illustrate that emotion and reward learning signals are separately encoded in the 

brain. 

 

[Figure 3 placeholder] 

 

To assess the neural learning effects on choice, especially given our behavioral findings showing 

that the relationship between PEs and choice varies with round number, we next allowed each ERP 

to interact with round. Results reveal a significant simple effect of P3b on choice (Table 2), as well 

as an interactive effect between P3b and round on choice (Table 2; Fig. 2B). This mirrors our 

behavioral finding, revealing that the P3b—which is uniquely associated with valence PEs—is the 

sole neural signal driving choice, and the strength of this neural signal diminishes over time as 

more information is gleaned about a partner’s behavior. Although not statistically significant, the 

interaction between FRN and round also reflects the behavioral pattern, where the relationship 

between FRN and choice strengthens with time (Table 2; Fig. 2B). Collectively, these findings 

illustrate that both FRN and P3b uniquely track reward and emotion learning signals, but that only 

emotion PEs, indexed by the P3b, are relevant for choice. 

 

[Table 2 placeholder] 

 

 

Reward and affective PEs are resolved through different mechanisms. Although most PEs are 

no longer predictive by the final round—indicating rapid learning—it remains unclear which 

component of the PE drives the error signal. On one hand, participants might adjust their 

expectations to make upcoming events less surprising. This dovetails with reinforcement learning 

accounts which predominantly emphasize adjusting PEs by altering expectations (i.e., increasing 

Q-value of an action to anticipate a greater reward next time). On the other hand, participants could 

alter experiences (perhaps by employing emotion regulation tactics) to lessen an event’s impact. 

While research on affective forecasting suggests that accurately predicting future emotional events 

is challenging32,33, one could use emotion regulation strategies to modify responses to events like 

unfair offers34. These two accounts present divergent theories about how affective and reward PEs 

might drive learning.  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.24.577042doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577042
http://creativecommons.org/licenses/by-nc/4.0/


 8 

To explore the theory that modifying expectation can reduce both affective and reward PEs, we 

examined how reward, valence, and arousal expectations changed throughout the task. As 

expected, participants show the largest update in both reward and emotion expectations between 

the first and second rounds (Table 3, Fig. 4). We then probed how expectations change between 

rounds two through five to understand if participants continue to adapt after an initial surprise. 

Reward expectations for this period reveal that participants continue to refine beliefs about their 

partners, baring evidence of continued learning through reward PEs. In contrast, expectations 

about valence and arousal remain largely consistent across all partner types from rounds two 

through five, suggesting participants do not continue to adjust their affective expectations after the 

initial round. In other words, only reward—and not affective—PEs are resolved by altering 

expectations. Next, we examined whether experiences change across the task. We found that 

participant’s subjective reports of their valence and arousal experiences changed significantly over 

rounds. Specifically, negative reactions to unfair offers wane over time, and the intense positive 

feelings of receiving a fair offer also diminish as you learn more about the fair partner (Table 3, 

Fig. 4). Given that monetary offers are fixed by task design, offers do not significantly vary across 

rounds. Thus, these results paint a clear distinction in how affective and reward PEs are leveraged 

for learning: after an initial large update of expectations, reward PEs are resolved by adjusting 

reward expectations (dovetailing with the RL literature), whereas affective PEs are managed by 

aligning emotional experiences with prior predictions.  

 

[Table 3 placeholder] 

[Figure 4 placeholder] 

Discussion 
 

While emotions clearly influence learning and decision-making35, most reinforcement learning 

models do not incorporate emotions as an error signal driving social learning. Instead, these models 

predominantly emphasize reward PEs as the central driver of behavior, with some exceptions36,37. 

In this study, we leverage EEG to determine if emotions serve as a key learning signal in a repeated 

economic game, and whether these emotion signals can be differentiated from reward PEs. Our 

behavioral results show that affective PEs have an independent and stronger contribution to choice, 

especially when there is significant uncertainty about a partner’s actions. As this uncertainty 
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decreases with experience, reward PEs begin to play a more dominant role in guiding choice. At 

the neural level, distinct ERPs were found to index each PE: the FRN corresponds most closely 

with reward PEs, the P3b is associated with valence PEs, and the P3a is indexed by arousal about 

offer extremity. Collectively, these findings suggest that reward and emotion learning signals have 

dissociable neural locations with distinct temporal trajectories. At the trial level, that the temporal 

trajectory of the FRN comes online first and is then followed by the P3b, suggests that monetary 

offers are likely initially evaluated based on how surprising the reward is (e.g., “How does this 

monetary offer differ from my reward expectations?”) and only later are violations of emotion 

expectations incorporated (e.g., “I feel better/worse than anticipated”). An examination of social 

learning over time, however, shows that affective PEs are most powerful during early trials and 

attenuate as uncertainty is reduced. In contrast, reward PEs follow the opposite pattern, growing 

in predictive power over time.  

 

In contrast to reward-centric accounts that dominate the learning literature38, our findings 

underscore that violations of affect expectations play a particularly privileged role in social 

learning, a role that cannot be solely subsumed by rewards. Although rewards may be sufficient 

for building successful artificial agents, there is growing concern about whether external reward 

functions are enough to explain the breadth and flexibility of human decision-making, and it has 

been suggested that emotional signals might bridge this gap39-41. While prior affective research has 

primarily explored long-term affective forecasting errors33 or contexts absent of trial-by-trial 

learning19, here we provide a direct assessment of affective learning signals at the neural level. 

Specifically, we find that the P3b component, which tracks valence PEs, stands as the sole neural 

predictor of social choice. This aligns with prior work showing that the P3b integrates information 

from multiple learning mechanisms relevant for decision policy changes31,42. While far less 

influential, reward PEs still contribute to learning22,29,43,44, and our findings show that the FRN 

uniquely indexes monetary reward PEs—even when controlling for affective signals. In summary, 

a comprehensive explanation of human decision-making necessitates consideration of both 

rewards and emotions.   

 

While research indicates that emotional stimuli, such as faces or words, are sometimes processed 

relatively early45-47, our results indicate that evaluations of emotionally charged social exchanges 
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are initially evaluated based on reward. While at first blush this might appear as a discrepancy, 

emotional experiences unfold over time, which include initial attention to the event and subsequent 

evaluation48. That we probe participants’ self-reports of their affective experience following the 

offer, may align more consistently with the evaluation of an affective experience rather than initial 

attention. This account aligns with other EEG work showing that late neural components, such as 

the Late Positive Potential (LPP), are associated with emotional stimuli49. Interestingly, the LPP 

shares similar morphology with the P3b, is sensitive to a stimulus’s emotional saliency50, can be 

influenced by cognitive reappraisal or attentional shifts51, and is also known to modulate attention 

during late-stage processing52,53. Taken together, this suggests that emotional processing that 

unfolds on later temporal trajectories can still be influential for higher cognition.  

 

Our data also suggests that affective experiences habituate with repeated experiences, giving rise 

to smaller prediction errors over time. The consequence of blunted affective responses through 

experience (i.e., reduced prediction errors) means that the emotional experiences of an initial 

interaction with a social partner is amplified compared to subsequent encounters. This pattern is 

consistent with normative prescriptions for learning in uncertain and dynamic environments54-56, 

highlighting the possibility that the attenuation of affective experience might serve an important 

role in optimizing learning under uncertainty. Future work could explore this further by extending 

our paradigm to manipulate a broader array of factors that influence normative learning dynamics, 

such as outcome stochasticity55,57, volatility54,57, and temporal structure31,58.  

 

By taking the simple, albeit novel, step of incorporating emotion as an error signal into a 

framework, we reveal the pivotal role of affective PEs in driving social learning. With the precise 

temporal neural time course of EEG, we provide evidence for early processing of reward PEs and 

the later processing of affective PEs when learning about other people. Although violations of 

emotion expectations are integrated relatively late in the decision process, they play the strongest 

role in predicting social choice—providing evidence of a neurobiologically plausible distinct 

emotion error signal.  
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Materials and methods 

 

Participants  
 

Participants (N = 41, 25 female, mean age = 20.8 ± 4.4) received either monetary compensation 

($15 per hour) or course credits and provided informed consent in a manner approved by Brown 

University’s Institutional Review Board under protocol 1607001555. A power analysis of the 

unique effect of valence prediction error on choice in our prior work19 revealed that 18 participants 

would be sufficient to detect this effect with an alpha of 0.05 and power (beta) of 0.80. 

Accordingly, we aimed to exceed this and collected a sample of 40 participants which matches 

sample sizes of recent EEG studies focusing on the FRN and P30031,42. 

 

Task and procedure 
 

Participants played an adapted repeated Ultimatum Game59,60 that included subjective emotion and 

reward ratings19,28. Participants were told they were playing with past participants who gave offers 

across five rounds, conditional on participant’s choices to accept or reject each offer—similar to 

strategy methods used in economics61. Unknown to participants, their partner’s offers were 

generated from one of three normal distributions representing three types of proposers: 1) “unfair” 

proposers gave offers according to a normal distribution with a mean of $1 and SD of 0.50; 2) 

“neutral” proposers gave $3 on average with a SD of 0.50; and 3) “fair” proposers who gave $5 

on average with a SD of 0.50. Participants played with 36 unique partners, 12 of each type and all 

five offers from each partner were randomly drawn from their respective normal distribution. We 

used faces from the 74 image MR2 database62 to represent partners and 36 faces were pseudo-

randomly pulled from this database per participant to achieve a balanced distribution of images of 

men and women of European, African, and East Asian ancestry. Subjective affective predictions 

and experiences were reported using a 500-500 pixel two-dimensional affect grid where the 

horizontal axis was valence (unpleasant/pleasant feelings) and the vertical axis was arousal 

(low/high intensity feelings). Both dimensions range from -250 to +250. To familiarize 

participants with this affect grid, participants completed an emotion classification task prior to the 

repeated UG. Participants made affect ratings of 20 canonical emotion words (for example, angry, 

sad, and surprised) on the grid, twice for each word, in a randomized order. Training participants 
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to interpret this subjective affect grid has shown strong convergent validity with other approaches 

for emotion ratings63.  

 

We calculated affective prediction errors (PEs) on a trial-by-trial basis by measuring the 

discrepancy between participants’ actual affective experiences and their affect expectations. 

Emotion PEs can be defined on both valence and arousal dimensions. A valence PE was computed 

by subtracting the predicted level of (un)pleasantness of an offer from the actual experienced 

(un)pleasantness, while an arousal PE was the difference between the expected arousal and actual 

experienced arousal. For instance, if a participant felt unpleasant about receiving an offer (e.g., 

rating it -200) but had anticipated feeling slightly pleasant (e.g., rating it +40), the valence PE 

would be -240 (-200 minus +40). Similarly, reward PEs were calculated by subtracting the 

predicted monetary reward from the actual offer given to the participant for each trial.  

 

The was UG comprised of nine blocks of four partners each (20 trials per block), with self-paced 

rests between blocks for a total of 180 trials. Participants additionally completed pre-UG and post-

UG likability ratings for all 36 partners on a visual analog scale (0 – 10, in increments of .01). The 

experiment was delivered in Matlab (The MathWorks, Inc.) using the Psychtoolbox-3 package and 

included stimulus presentation, event, and response logging. A standard computer mouse and 

keyboard were used for response registration. 

 

During the UG, participants were first shown a picture of their partner for 1000ms, followed by a 

fixation cross (500ms, same timing for all fixations). Participants were then given cues for reward 

predictions ($?) or affect predictions (E?; 1000ms each); these cues indicate that participants will 

be making the required response on the next screen. Reward predictions (how much participants 

expect the partner to offer) are reported on a visual analog scale ($0 - $10) and participants have 

unlimited time to respond. Affect predictions (how participants expect to feel after the offer) are 

reported on the valence-arousal grid and participants are required to answer within 5s. The order 

of predictions was counterbalanced and separated by fixations. Following predictions, the offer 

was given (2000ms) in dollar and cent format (e.g., $2.37), and followed by another fixation. 

Participants were then given an affective experience rating cue (E; 1000ms), which indicated that 

they should rate how they felt about the offer using the affect-grid (required within 5s). A fixation 
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followed and then participants were given a choice cue (C; 1000ms) indicating they would need 

to make their choice. The choices to accept or reject were presented on the screen (e.g., [A] [R]), 

and the order of these options was counterbalanced. When participants were matched with a new 

partner, they were presented with a waiting screen for 1-4s before starting the next trial.  

 

Prior to experiment, participants filled in the following two personality questionnaires: the 20-item 

Toronto Alexithymia Scale64 and the Temporal Experience of Pleasure Scale65. These measures 

were registered as potential control variables and for other purposes not addressed here. 

Participants were then seated in a shielded EEG cabin. Prior to completing the emotion 

classification and UG task, participants performed practice trials.   

 

Psychophysiological recording and processing 
 

EEG was recorded using BrainVision recorder software (Brain Products, München, Germany) at 

a sampling rate of 500 Hz from 64 Ag/AgCl electrodes mounted in an electrode cap (ECI Inc.). 

Data was collected using Cz as a reference channel and re-referenced to average reference offline. 

Electrodes below the eyes (IO1, IO2) and at the outer canthi (LO1, LO2) recorded vertical and 

horizonal ocular activity. At the end of the experiment we recorded prototypical eye movements 

(20 trials of each: up, down, left, and right) for offline ocular artifact correction. We kept electrode 

impedance below 10 kΩ.  

 

EEG data were processed using Matlab (The MathWorks Inc.) using the EEGlab toolbox66 as 

previously described42 and included the following steps: (1) re-referencing to average reference 

and retrieving the Cz channel, (2) removal of blink and eye movement artifacts using BESA67, (3) 

bandpass filtering of .1 – 40 Hz, (3), (4) epoching the ongoing EEG from -200 to 800ms relative 

to offer onset, (5) removal of segments containing artifacts, based on values exceeding ±150 µV 

and gradients larger than 50 µV between two adjacent sampling points. Baselines were corrected 

to the 200ms pre-stimulus interval (offer onset) using the regression method in subsequent 

analyses68.  
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To define the time windows for single-trial analyses of FRN, P3a and P3b amplitudes, we first 

determined the grant average peak latencies of FCz, FCz, and Pz, respectively. Accordingly, the 

FRN was quantified on single trials as the average voltage within an interval from 315 to 415ms 

after offer onset across all electrodes within a fronto-central region of interest including F3, Fz, 

F4, FC3,FCz, FC4, C3, Cz, C423. To control for P2 effects on the FRN, the P2 amplitude was also 

extracted within each trial as the average voltage between 199-299ms across fronto-central 

electrodes F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2, and included as a regressor in the analyses. P3a 

amplitude was quantified on single trials as the average voltage within a 363-463ms interval post-

offer across fronto-central electrodes F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C242. P3b amplitude was 

quantified on single trials as the average voltage within a 530-630ms interval post-offer within a 

parietally-focused region of interest including CP1, CPz, CP2, P1, Pz, P2, PO3, POz, PO442. 

 

Analyses 
 

Reward PEs (RPE) was determined as the offer minus the reward prediction given by participants 

Valence and Arousal PEs were determined similarly: the affective experience participants reported 

upon receiving the offer minus participant’s affective prediction for how they would feel after the 

offer. Prior to analyses, reward, valence, and arousal PEs were standardized but not mean centered, 

as zero represents a meaningful value on these scales (predicted and actual experiences are the 

same). Inspection of the behavioral data identified four trials in which impossible affect ratings 

were given (valence or arousal ratings outside of the 500 by 500-pixel grid) and these data were 

excluded from relevant analyses. 
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Table 1. Separable effects of valence and reward PEs predict learning to punish 

𝑃𝑢𝑛𝑖𝑠ℎi,t~ β0 + β1𝑅𝑒𝑤𝑎𝑟𝑑 𝑃𝐸i,t + β2𝑉𝑎𝑙𝑒𝑛𝑐𝑒 𝑃𝐸i,t + β3𝐴𝑟𝑜𝑢𝑠𝑎𝑙 𝑃𝐸i,t + 𝛽4𝑅𝑜𝑢𝑛𝑑𝑖,𝑡  
+  𝛽5𝑅𝑒𝑤𝑎𝑟𝑑 𝑃𝐸𝑖,𝑡: 𝑅𝑜𝑢𝑛𝑑𝑖,𝑡 + 𝛽6𝑉𝑎𝑙𝑒𝑛𝑐𝑒 𝑃𝐸𝑖,𝑡: 𝑅𝑜𝑢𝑛𝑑𝑖,𝑡

+ 𝛽7𝐴𝑟𝑜𝑢𝑠𝑎𝑙 𝑃𝐸𝑖,𝑡: 𝑅𝑜𝑢𝑛𝑑𝑖,𝑡 +  ε 

Variable Estimate (SE) z p 

Punish    

     Intercept -1.61 (0.32) -5.03 <.001*** 

     Reward PE -0.50 (0.17) -3.02 .003** 

     Valence PE -0.99 (0.15) -6.42 <.001*** 

     Arousal PE 0.05 (0.14) 0.34 .737 

     Round 0.04 (0.03) 1.66 .10 

     Reward PE×Round -0.06 (0.03) -1.87 .06 

     Valence PE×Round 0.08 (0.03) 2.30 .02* 

     Arousal PE×Round 0.03 (0.03) 0.98 .33 

Note. Reward PEs are calculated by taking the difference between the experienced and predicted 

reward. Valence PEs and Arousal PEs are calculated by taking the difference between the 

experienced and predicted emotion on the relevant affect dimension. All variables were scaled 

but not mean-centered, as the zero point on each scale refers to the meaningful instance where 

expectations matched experience. The model includes subject-specific random intercepts and 

slopes for Reward PE, Valence PE, and Arousal PE. The dataset includes 7,376 observations 

from 41 participants. *** p <.001, ** p < .01, * p < .05. 
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Table 2. Only P3b predicts choices over rounds 

𝑃𝑢𝑛𝑖𝑠ℎi,t~ β0 + β1𝑃3𝑏i,t + β2𝑃3𝑎i,t + β3𝐹𝑅𝑁i,t + 𝛽4𝑃2𝑖,𝑡 + 𝛽5𝑅𝑜𝑢𝑛𝑑𝑖,𝑡  
+ 𝛽6𝑃3𝑏𝑖,𝑡: 𝑅𝑜𝑢𝑛𝑑𝑖,𝑡 + 𝛽7𝑃3𝑎𝑖,𝑡: 𝑅𝑜𝑢𝑛𝑑𝑖,𝑡 +  𝛽8𝐹𝑅𝑁𝑖,𝑡: 𝑅𝑜𝑢𝑛𝑑𝑖,𝑡

+ 𝛽9𝑃2𝑖,𝑡: 𝑅𝑜𝑢𝑛𝑑𝑖,𝑡 +  ε 

Variable Estimate (SE) z p 

Punish    

     Intercept -1.29 (0.29) -4.44 <.001*** 

     P3b 0.29 (0.09) 3.18 .001*** 

     P3a 0.06 (0.11) 0.52 0.60 

     FRN -0.01 (0.10) -0.12 0.90 

     P2 -0.09 (0.05) -1.83 .07 

     Round -0.01 (0.11) -0.01 .99 

     P3b×Round -0.06 (0.03) -2.39 .02* 

     P3a ×Round -0.03 (0.03) -0.78 .43 

     FRN×Round 0.05 (0.03) 1.69 .09 

     P2×Round -0.03 (0.03) -0.99 .32 

Note. P2, FRN, P3a, and P3b are all trial-by-trial amplitudes in response to the offer (see 

Methods). All variables were scaled but not mean-centered. The model includes P2 as a 

control for the FRN since the FRN is defined as the N2 amplitude. The model includes 

subject-specific random intercept. The dataset includes 5,351 observations from 35 

participants. 

 *** p <.001 ** p <.01 * p <.05 
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Table 3. Different mechanisms underlying resolution of reward and affective PEs  

 Round 1 – 2 Update 

(Expectations)  

Rounds 2-5 Update 

(Expectations) 

Round 1 – 5 Update 

(Experience) 

 t-score (P-value) 𝛽 ± 𝑆𝐸 (P-value) 𝛽 ± 𝑆𝐸 (P-value) 

Fair partner    

     Reward 9.53 (<.001***) 0.02±0.01 (.02*) - 

     Valence 9.23 (<.001***) 0.01±0.01 (.44) -0.04±0.01 (<.001***) 

     Arousal 5.00 (<.001***) -0.001±0.02 (.94) -0.08±0.02 (<.001***) 

Neutral partner    

     Reward -3.00 (.005**) -0.02±0.01 (.09) - 

     Valence -1.44 (.16) -0.02±0.01 (.16) 0.02±0.01 (.05) 

     Arousal -1.45 (.15) -0.03±0.01 (.02*) -0.01±0.01 (.35) 

Unfair partner    

     Reward -14.19 (<.001***) -0.05±0.02 (.006**) - 

     Valence -10.36 (<.001***) 0.01±0.02 (.51) 0.07±0.02 (<.001***) 

     Arousal -2.28 (0.03*) -0.01±0.02 (.55) -0.003±0.01 (.82) 

Note. Rounds 1-2 update (expectations) shows the result of a paired t-test comparing 

expectation values from round 2 to round 1. Rounds 2-5 update (expectations) shows the result 

of a LMM comparing how expectation values change between rounds 2-5. Rounds 1-5 update 

(experience) shows the result of LMMs comparing how emotional experiences change between 

rounds 1-5. Reward experiences were defined by task parameters and are stable across rounds 

(see Methods). ***P<.001, **P<.01, *P<.05. 
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Figure 1. Repeated Ultimatum Game (UG) Design. A) Trial Design. Participants are partnered 

with another individual and play five rounds of a repeated UG. Participants first see a photograph 

and name of their partner (Partner Face), before being asked to report how much money they 

expected to receive in an offer (Reward Expectation) and how they expected to feel after the offer 

(Affect Expectation). Next, participants received an offer showing the proposed amount for the 

participant as well as the amount kept by the partner (Offer). After receiving the offer, participants 

indicated how they felt (Affective Experience) before deciding to accept or reject the offer 

(Decision). Timings show the average maximum duration of each of the stages, with “until 

response” meaning the program waited until the participant gave a response. B) Partner Offers. 

Unknown to participants, offers were determined by different normal distributions per partner 

type. On average, unfair partners gave $1, neutral gave $3, and fair gave $5; all partners’ normal 

distributions used a standard deviation of $0.50. C) Prediction Errors (PEs). On each trial we 

compute three empirical PEs: a reward PE (δ), a valence PE (ν) and an arousal PE (α). In the 

equations, �̂� refers to an individual’s prediction about the reward or emotion they would 

experience, while 𝑦 refers to their actual experience. D) EEG Offer Activity. Our analyses focus 

on the EEG activity occurring after the offer presentation. The average EEG activity at electrode 

FCz in response to offers is shown alongside a topography of the average activity across electrodes 

between 200ms to 250ms. 
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Figure 2. Separable behavioral and neural effects of valence and reward PEs predict learning 

to punish. A) Valence and reward PEs predict choice differently across rounds. The data on 

each graph reflect the probability of rejecting the offer from Table 1 and the colour of each line 

indicates the round number (1 – 5) of the Ultimatum Game. Negative values reflect negative PEs, 

indicating less pleasantness (valence), arousal, and money (reward) than expected. B) 

Relationship between ERP and choice over round. The data on each graph reflect the probability 

of rejecting the offer from Table 2 and the colour of each line indicates the round number (1 – 5) 

of the Ultimatum Game. Positive values reflect positive EEG amplitudes, indicating a greater P3b, 

P3a or FRN effect. Shaded areas reflect ±1 S.E. ***P<.001, **P<.01, *P<.05, t = 0.06. 
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Figure 3. Separate ERPs index reward and affective PEs. The data on each graph reflect the 

beta coefficient from LMMs modeling the marginal contributions of the absolute value of each PE 

type on separate ERPs: the FRN, P3a, and P3b. Error bars reflect ±1 S.E. ***P<.001, **P<.01, 

*P<.05. 
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Figure 4. Learning in the Ultimatum Game. A) Valence measurements. Valence PEs are 

calculated as the difference between valence experience and expectations for each round. Valence 

ratings are between -250 (unpleasant) and 250 (pleasant). B) Arousal measurements. Arousal 

PEs are calculated as the difference between arousal experience and expectations for each round. 

Arousal ratings are between -250 (low intensity) and 250 (high intensity). C) Reward 

measurements. Reward prediction errors (PEs) are calculated as the difference between reward 

offer and reward expectations for each round. Reward measurements are between $0 and $10.All 

data are averaged within and then across participants for each round and partner type. All error 

bars reflect ± 1 S.E. Statistical tests are shown in Table 2. ***P<.001, **P<.01, *P<.05. 
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