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When interacting with other people,
learners face a unique set of challenges.

Standard computational models fail
to capture real-world social learning
processes.

Improving computational models of
social learning will require embracing
the complexities of social decision
contexts.
Oriel FeldmanHall1,2,* and Matthew R. Nassar2,3

The complex reward structure of the social world and the uncertainty endemic
to social contexts poses a challenge for modeling. For example, during social
interactions, the actions of one person influence the internal states of another.
These social dependencies make it difficult to formalize social learning problems
in a mathematically tractable way. While it is tempting to dispense with these
complexities, they are a defining feature of social life. Because the structure
of social interactions challenges the simplifying assumptions often made in
models, they make an ideal testbed for computational models of cognition. By
adopting a framework that embeds existing social knowledge into the model,
we can go beyond explaining behaviors in laboratory tasks to explaining those
observed in the wild.
Sophisticated social learning models
should account for dynamic social
rewards, unobservable internal states,
unwieldy state–action spaces, and the
fact that one person’s actions critically
influence another’s internal state.
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The challenge of social learning
As a discipline, social psychology seeks to understand how humans operate in context. Consider
deciding whether to collaborate with a colleague, lend money to a friend, or apologize to a
loved one. These decisions are not made in isolation. Rather, there is a vast amount of dynamic
contextual information that affects a choice, including social norms, past interactions, gossip from
peers, the present reaction of a colleague, or the opportunity for future interactions. Through this
lens, mapping the social mind attempts to achieve an almost impossible goal: how can we offer a
parsimonious, mechanistic account of social learning?

Computational formalisms offer an enticing solution [1]. Well-vetted mathematical models
can bring a level of precision and description to fuzzy theories seeking to explain social
behaviors in context [2]. For instance, a model, which can come in many flavors and levels
of abstraction, might reveal how people learn about one another, whether individual differ-
ences affect this learning process, or which contexts promote efficient learning. Indeed,
the last decade has witnessed an unprecedented uptick in the use of computational
models to test and enumerate the mechanisms governing social behaviors. At first blush,
such formalism seems like a promising avenue [3]. However, because the nature of learning
changes in fundamental ways when people interact with others [4], standard computational
models have struggled to capture the unique learning problems observed in the social
world.

Standard computational models of social learning
During social learning, as perhaps with all forms of learning, the problem we are trying to solve is
one of inference [5,6]. When interactingwith another person, selecting the appropriate next action
means figuring out what the other person is currently thinking, feeling, or intending to do. A
friendly smile can be the product of a large number of possible unobservable factors (e.g., is he
smiling because I just said something funny, because he is happy to be here, or is he thinking
about something else entirely unrelated?). Inferring the correct unobservable cause of the smile
is essential for deciding the next best action, which in turn influences what the other person will
say or do in response.
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Glossary
Internal states: a key component of
the social state space is the internal
states of the people with whom you
interact. This could include internal
states regarding what other people
know (e.g., ‘do they know what I
know?’), their emotional state (e.g., ‘are
they upset?’), or their motives (e.g., ‘are
they trying to get something from me?’).
These internal states are consequential
for the outcomes associated with our
own actions, limiting the amount of
experience that we can accumulate in
any particular state.
Joint goals: in the social world, there are
many situations where people share a
common goal, such as when two more
people want to coordinate or collaborate.
Examples of this include two colleagues
collaborating on a manuscript together, a
group of volunteers coordinating to
distribute vaccinations or food, a parent
and child exhibiting joint attention during
teaching, etc.
Latent social structures: these
include social norms (e.g., make eye
contact when chatting), cultural habits
(e.g., stand to the right on British
escalators so that others can pass on
the left), unobservable psychological
motivations (e.g., greed), and so forth.
Reward sources: this could refer to
money (as is traditionally done in
behavioral economics), or social
rewards, such as smiling, being included
in a social gathering, physical affection,
positive emotions, gossip, etc.
Second-order beliefs: one person’s
beliefs about another person’s beliefs
(e.g., ‘does he know that I know…that
he knows that I know?’). Since internal
states often include states of knowledge
about socially relevant variables, which in
many cases include our own state of
knowledge, second and higher order
beliefs extend the state space
dramatically.
Social priors: prior expectations over
socially relevant variables that can be
used to constrain interpretations of
observed actions (e.g., ‘is he acting out
of malice, or is there another less
devious explanation for his behavior?’)
and are updated with new observations
to provide a dynamic predictive
framework for interpreting the ongoing
social milieu.
Social reward function: the amount of
intrinsic pleasure assigned to all possible
achievable outcomes, where such
outcomesmight be achieved by taking a
The idea that the basic assumptions of reinforcement learning (RL) –where an agent uses reward
prediction errors to learn the value associated with specific actions – could be applied to social
behaviors has been a boon for social psychology. In their early instantiation, standard compu-
tational models of social learning co-opted well-established RL and Bayesian frameworks that
were configured to illuminate the mechanisms behind nonsocial learning. These nascent
models revealed that, much like classic reward learning, social learning in the laboratory can
be explained in terms of prediction errors [7–9]. It turns out that the difference between what
a person expects and what they ultimately encounter (the prediction error, δ) can capture
how humans learn social value, such as how generous another person is [10], or whether
another’s desire for punishment influences our own [11]. Other work using basic RL models
has established that the rate at which an individual updates their social expectations can be
described by a learning rate (α), which appears to be related to stable individual differences,
such as racial bias [12] or empathic concern [13].

Standard social RL frameworks typically follow a few key assumptions borrowed from the
nonsocial domain [14,15]. For starters, learning occurs incrementally through iterative trial-
and-error to estimate the expected value of a choice [8,10,12,16,17]. In addition, reward
functions are commonly parameterized by a simple monetary gain or loss [7,11,13], which
do not contend with the multifaceted and subjective reward functions that guide most everyday
social behavior [18]. Finally, these frameworks typically assume that learning occurs in a
context insensitive manner [19–23], such that learning about another’s social value, say, their
honesty, does not take into account any situational factors that might bias learning (e.g., helping
a friend by telling a white lie).

Although the application of basic RL has been successful for explaining many forms of learning
in the laboratory, there are reasons to be skeptical of their direct application to social learning
problems [24]. For example, in a classic decision-making framework, a reasonable inference
after receiving a big payout from a slot machine might be that the mean payout of the machine
is high, which should promote future gambling behaviors (Figure 1A). However, the process
generating social interactions differs substantially from the one that produces slot machine
payouts (Figure 1B). If we were to apply the same logic of interacting with the slot machine to
interacting with a person, a joke that elicited a laugh would lead us to infer our partner likes
jokes and thus we should simply tell another similar joke. Unless you are 2 years old and
charmingly cute, telling similar jokes over and over again would swiftly lead to frowns and the
other person may try to slip out the back door to escape.

To deal with this issue, research on social learning has often attempted to minimize this sort of
logical discrepancy by restricting the types of social interactions that can occur in laboratory
paradigms, or by adding additional parameters to standard models to account for a particular
feature of social learning in the most narrow sense (e.g., fitting different learning rates to differ-
ent partner types in an economic game) [11]. While these types of piecemeal extensions
to standard RL models may facilitate better descriptions of data in specific social laboratory
paradigms (Box 1), many models built to characterize learning in nonsocial contexts will not
generalize to social contexts because the complexities inherent to the social inference prob-
lem challenge many of the core assumptions that are made to gain traction when modeling
the human mind [25,26] (Figure 1B). To successfully leverage computational models to ad-
vance our understanding of how people learn about their social worlds, a more radical recon-
sideration of the assumptions made in standard models is needed. Rather than recasting a
hard problem as a simpler one, we must embark on an epistemological process of judiciously
building models and developing tasks that directly grapple with the real-life problem of
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Figure 1. Generative models for the outcome of social and nonsocial decisions. (A) Decisions about slot machines
(i.e., bandits) have played a crucial role in shaping our understanding of learning and decision-making in nonsocial domains.
(B) While social decisionsmay share some commonalities with the bandit problem, these situations look much different when
we consider the generative model that gives rise to outcomes (e.g., money in the bandit problem or our partner’s response in
the social domain). In particular, social outcomes depend not only one’s own actions (in green: should I tell a joke? Ask on a
second date?), but also a large number of variables that collectively make up the internal state of one’s partner (in blue). While
these social dependencies complicate how we model social learning problems, representing these variables is critical for
inferring the partner’s underlying state and thus for predicting his response to possible actions that could be taken.
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specific social action in a specific state.
Such a reward function could be used to
define training signals for learning or to
assign values for planning.
State–action spaces: the space over
possible social actions that could be
taken (i.e., telling a joke) and possible
social states that they could be taken
from (i.e., during a baptism). Two
situations should be represented by
different states if the actions taken in
themdiffer in their distribution of possible
outcomes, in particular, rewards.
interest, which begins with more closely approximating the complex tensions encountered in
the real social world.

The complexities of the social world challenge simplifying assumptions made in
models
To illustrate the complexities of the social world, let’s take the example of going on a first date. As
two individuals get to know one another, they share stories that reveal insights about what they
value. The datemight start out well, where storytelling elicits shared smiles and collective laughter;
however, an ill-posed joke leads to a series of frowns, averted eyes, and frequent watch-checking
on one side of the table. Imagine the problem each person is trying to solve. Presumably both
people aim to maximize their enjoyment and make progress towards possible future rewards;
in this case, deciding whether to go on another date. Despite the intuitive simplicity of calculating
social rewards, several features of the social world make these calculations difficult (and, in fact,
make exact calculations intractable; Figure 2). These features, which do not neatly map on to the
assumptions baked into standard computational models, can be grouped into three categories:
ubiquitous uncertainty, dynamic rewards in context, and social dependencies, each of which
poses a formidable challenge to modeling. That these factors also interact with one another,
further compounds the challenge of modeling how learning unfolds in the social world.

Social uncertainty
The first challenge for modeling the social learning problem is the fact that another person’s
mood, motives, and intentions, which we collectively refer to as their internal state (see
Glossary), are not observable and are therefore highly uncertain [27,28]. This poses a problem
for computing the values of our own potential actions, since they depend on our partners’ internal
state (Figure 2, purple box) and how our partner will respond to our actions in turn (Figure 2,
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Box 1. Expanding social models: what do we gain beyond simple RL?

To concretely illustrate the potential advantages of models that embrace the inherent complexities of social decisions, we
consider a trust game where a participant is repeatedly asked how much money to invest in a partner. Once invested, the
money is multiplied by some factor and the partner can share some of those increased earnings with the participant. The
game can be played iteratively so that the participant can learn about the partner and alter investments accordingly.

A simple RL model

In principle, such a task could be solved through a basic RL algorithm that learns an action value for investing according to
the following rule:

V investf g← V investf g þ α R − V investf g
� � ½I�

Where R reflects the return on investment (amount returned minus amount invested), α is the learning rate, and V reflects
the value of investing. Through trial-and-error (i.e., experiencing monetary returns from the partner), this model could
efficiently learn the value of investing in a partner that yields either a stable return on investments or one in which the return
on investment slowly shifts over time. With a simple model like this, one could identify, for example, that investing in a
predictable partner is more valuable than investing in an unpredictable partner.

What if we build somemore realistic social complexity into the problem? Let us consider the possibility that the partner has
partially hidden internal states, such as moods. In this case, when the partner is in a happy state, returns tend to be high,
and when in an unhappy state, returns tend to be low. If the partner’s mood is fairly stable (i.e., transitions betweenmoods
are rare), the basic RL algorithm can slowly adjust its investment behavior according to the most recent mood, albeit far
from optimally. Other standard off-the-shelf models that deal with discontinuous data, such as hierarchical Gaussian filters
[110] or change point models [111], can achieve more efficient learning once the partner’s mood has changed, but these
models must learn from scratch after each mood transition, rather than transferring previously learned knowledge.

A slightly more complex model

Now consider extending the model to deal directly with the social complexity. Instead of considering the partner as a
monolith, let us assume that the partner has multiple internal states that are yoked to how much money is returned to
the participant (Figure 2). In this situation, learning requires that the current state of the partner (S) on timestep (t) be inferred
first:

p StjSt − 1;Rtð Þ ¼ p Rtð j StÞ p Stð j St − 1Þp St − 1ð Þ
p Rtð Þ ½II�

Based on the likelihood of that state yielding the observed return (R) and the probability of a transition from the previous
state (mood) to the current one p(St | St−1). Like the simple RL algorithm earlier, a participant must learn the return rate
associated with a partner being in a given mood, which could be done with Bayes rule or through an RL approximation:

R̂St ¼ s ¼ R̂St ¼ s þ α Rt − R̂St ¼ s

� �
½III�

Where R̂St ¼ s is the return expected in the current state (analogous to V{invest} in the simplemodel) andRt is the actual return
experienced. The key difference between this model and the simple RL model is that the more complex model will be slow
to adjust after state transitions that occur early in the game, as expected returns given a specific state are still unclear. Once
the model learns that there are two common states that have high and low average returns, respectively, it only needs to
see one trial after a transition to quickly infer that the partner’s mood has changed and expectations about future returns
are adjusted accordingly. The fact that this slightly more complex model can capture behaviors that are better matched to
this particular task and provide an intuitive explanation that participants learn to recognize (and value) the moods of their
partner, yields a tool and result that are more likely to generalize to real-world settings.

Nonetheless, even this toy problem and model are highly simplified with respect to social learning in the wild and will
thus be unable to capture other aspects of social behavior observed beyond the conditions of this particular task.
For example, recognizing that a partner is in a bad mood might lead someone to try to cheer the partner up, which
could be viewed from the utilitarian perspective as selecting actions that are likely to promote latent state transitions
that yield favorable future social interactions. Although this social learning problem could be modeled in the same
framework by expanding the transition function p(St | St−1) to include the actions of the investor p(St | St−1, At), testing
such a model in the laboratory requires a more complex task design (e.g., action selection affects the state transition
structure), which reduces experimental control (as participants now control how they move through state space). We
do not advocate giving up experimental control completely, but instead, leveraging task designs and models that
systematically explore specific features of social learning, while ensuring sufficient experimental control to adequately
characterize these features.
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Figure 2. Mathematics of social learning. Left: social situations, such as a first date, require considering a host of possibilities to better understand why a partner is
behaving a certain way. These considerations are useful in that they might allow us to better predict how someone would respond if we chose a particular action, thereby
promoting social actions with desirable outcomes. Despite the ubiquity of these social situations, and our ability to navigate them effectively, modeling these dynamics
poses a number of mathematical challenges. Top: social learning requires inferring the internal state of the partner (S) and their future action (Xt) based on previous
observations of their responses (X1:t–1) to our own actions (A1:t–1). Such inferences are highly uncertain, as different internal states could yield similar behavioral
responses (purple box). Furthermore, learning to predict a partner’s response to our own actions requires considering how our partner’s internal state is changing,
which depends critically on our own actions: saying something boring is unlikely to change the internal state of a partner, but proposing a second date might do so,
one way or the other (green box). A final issue is that the combinatorial size of all potential actions and partner internal states means that most available actions have
never been tried in the current state (orange box). Only by considering (multiplying) all of these factors, and integrating over internal states, can we determine our
partner’s most likely response to our candidate actions (underlined in yellow). Bottom: within a normative framework, our own social actions (A) should be selected
according to their ability to maximize long run rewards (R). Doing so requires computing the probability distribution over our partner’s response to each of our
candidate actions on the current timestep (p(Xn|At); yellow shading) as described earlier, then multiplying it by the reward it would yield (R(Xn)), and doing so recursively
through future timesteps to evaluate the sequence of actions that would yield the largest long run returns (Equation 2). Inferring a partner’s response to our actions (p
(X|A)) comes with a number of challenges. Planning is also particularly difficult in social domains because of the size of the space of possible actions and associated
responses (blue box). An additional issue is that the reward associated with any given outcome (e.g., your partner’s response) is highly contextual [e.g., the reward asso-
ciated with a partner laughing may be high if it follows a joke, but low if it follows a proposal for a second date (pink box)].

Trends in Cognitive Sciences
orange box). People are constantly trying to figure out what others know or believe, which is only
made more challenging by the fact that people are not static, reliable, or predictable and are sub-
ject to the influence of emotion and past experience [29]. Moreover, each person we encounter is
unique and has a different set of ever-changing intentions, beliefs, and moods. The combination
of stochastic (i.e., no two people are the same) and nonstationary (i.e., each person’s internal
state changes; Figure 2, green box) uncertainty, only adds an additional hurdle when trying to
formally model how people infer what another’s motivations are [30].
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 5
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Uncertainty also arises due to the breadth of the action space. Not having access to the thoughts
and beliefs of others means there is no fixed action space where the same action, or even set of
actions, leads to a certain likelihood of reward (in this case, a smile or second date). The difficulty
with parameterizing what the action space even ought to be when there are people dynamically
interacting creates a dimensionality problem. Any conceived action (e.g., tell a joke, ask on a
second date) and state (e.g., laughter, boredom) is possible with one person and when there
are two or more interacting individuals, the state–action space explodes (Figure 2, yellow
shaded box). The breadth of this space not only makes the values associated with each action
more uncertain, but it also increases the difficulty of the planning problem (Figure 2, blue box).
Despite the uncertainty and planning difficulties produced by social state–action spaces, people
routinely display social behaviors that demonstrate long-run planning, such as asking a friend to
call at a certain time in case the date is going poorly. That humans can achieve such sophisticated
learning provides a challenge to models in formalizing how this is done.

Rewards in context
The second issue is how models should account for dynamic rewards with multiple interacting
people. Rewards are critical for computing the expected value of social actions (Figure 2,
pink box), yet social rewards are highly contextual and critically depend on the wants,
needs, and motivations of the individuals interacting, as well as the collective dynamic
between them [31,32]. In our example, halfway through the date, one person may be looking
for a second date while the other is plotting the best excuse to leave early. Even within an
individual, a partner’s laugh might be perceived as rewarding in one context (after telling a
joke) but may have negative implications in another (following a request for a second date),
revealing just how sensitive social rewards are to the situation. Because rewards can be
inconsistent within a particular person and are not necessarily shared across people, models
that assume a singular, fixed reward function are likely to capture only the most simplified
social learning problems.

Figuring out the proper reward function becomes even more challenging once you take into
account uncertainty and, in particular, self-referential, second-order beliefs about what
others think you know [33]. When one person assumes the other has a different reward
function than they actually do (e.g., misreading the social cues that the date is metaphorically
over), there is a misalignment between the structure of interacting social minds and the
algorithms meant to assess the computations governing that interaction. Because reward is
partially hidden and differently parameterized for each person, there is the ever persistent
challenge of formalizing joint goals (e.g., coordinating a second date or agreeing not to go
out again) [34].

Social dependencies
As if this were all not challenging enough, social inference problems become even thornier when
we consider that one person’s actions affect another’s internal state. A person’s choice to say
something (or to not say something), express a certain emotion, or make a joke, can swiftly
alter another’s feelings and motivations (Figure 2, green box). This more complicated inference
problem adds challenges, but also an opportunity, for models: rather than trying to acquire imme-
diate rewards, effective planning could allow for the selection of actions that influence a partner’s
internal state, which in turn would help reap rewarding outcomes generated in that state. This sort
of behavior is ubiquitous in social interactions (e.g., paying a compliment before asking a favor)
[35], but scaling up models to achieve this behavior is not trivial. For every person you add into
the mix (e.g., group dynamics), these issues blossom, as the actions of each person can affect
the internal state of every other member in the group.
6 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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These multiple layers of recursion and uncertainty propagation endemic to the social world make
it difficult to formalize complex social interactions in a mathematically tractable way. However, the
fact that the number of factors known to bias social cognition is matched by the sheer number of
verbal theories that abound [36] only highlights the pressing need to more precisely characterize
the mechanics of the social mind. The problem is that reducing the theoretical landscape through
a superficial model-fitting enterprise informed by simple, borrowed models (e.g., focusing on
model estimation with little attention to model criticism [37]), has the potential to lead us astray
[38]. When simple models are fit to complex behavior, parameter estimates can be misleading
[25,39,40] and will likely fail to generalize beyond a particular experimental paradigm [24], a
point that has recently been noted with respect to the learning rate in RL models [41]. The danger
is even greater when simple models constrain experimental paradigms, since it has the potential
to divert resources to solving a tractable problem that bears little resemblance to the realities of
the social world [42,43]. In either case, the resulting mechanistic conclusions can be misleading
and are thus unlikely to illuminate much that is useful about how humans actually navigate their
social worlds. So how do we create models that emulate the unique dynamics of the social
world?

A theoretical solution: generate models inspired by social psychology
(rather than vice versa)
We believe that modeling social interactions provides an ideal testbed for computational models
of cognition, precisely because the complexities of the social world challenge simplifying assump-
tions often made in off-the-shelf models. By using social cognition as the testing ground, we can
redefine howmodels are created and deployed, whichmeans they canmore closely approximate
the tensions encountered in the real world. In many cases, this means casting off some of the
tried-and-true frameworks that have been instrumental for probing other types of cognitive pro-
cesses. We can replace those models with hypothesis-driven and well-specified computational
frameworks that reflect the structure of the social environment (e.g., the other people present,
the broad social norms, the local social habits), which will be able to provide necessary insights
about the inner architecture of the social mind. Moreover, to successfully capture the complexi-
ties of the social world, researchers should start by staking the question on psychological
grounds. The range of cognitive processes in question should influence how a paradigm is
constructed (ideally by generating one that closely mimics the structure of the social context)
and how a computational model is created (ideally one that interrogates multiple mechanisms
that could be at play). If theories of social learning are formulated thoughtfully in computational
terms, then verbal models can be replaced with those that are mathematically tractable, which
enables psychological assumptions and mechanisms to be clearly tested. To harness the
power of computational modeling when trying to understand interacting human minds, we offer
three concrete strategies, each of which help to mitigate the three challenges detailed earlier.

Creating complex social learning paradigms
Given that models and paradigms are intimately linked, one way to produce a model that can
better reflect the social mind is to construct complex paradigms that are imbued with some of
the uncertainties present in the social world. This requires any model that provides a sufficient
explanation of behavior to cope with these complexities. Rather than relying on artificial,
constricted analogs of how state–action space is organized when people interact, more complex
paradigms enable the existence, and therefore measurement, of multiple state spaces and social
representations [44–47]. The problem of stripping a task of its complexity and, by extension,
limiting the amount of social uncertainty present in the testbed, is brought into stark relief when
we consider the problem of generalization (i.e., when to take previously learned rules and apply
them to novel contexts). Because no two situations are alike in the social world, successfully
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 7
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generalizing is of paramount importance [48,49]. Consider the situation in which you repeatedly
ask your colleague for a favor. In some cases, he readily agrees, but in others he fails to offer
any help. If you could figure out why he only occasionally helps it would save you a lot of time
and energy, since you could use this information to guide whether future requests should be
made. Fortunately, just beneath the surface of every interaction lie stable social structures,
which include unobservable psychological motivations [50] and shared latent social norms [51].
Although the inference problem in the social world is hard, people can make use of these latent
dependencies to minimize uncertainty and serve their own goals – otherwise, inference in
the space of real-world behavior would be completely intractable without strong inductive
biases [52,53].

Building paradigms that capitalize on these latent social structures can help researchers
understand how generalization mechanisms are deployed during social interactions rife with
uncertainty [54,55]. For example, in our own work, we constructed a paradigm to test how
humans figure out the unobservable motivations of another person (e.g., a player’s greed,
envy, risk aversion, etc.) from their observable decisions (e.g., cooperating or defecting with
opponents [44]). Players and opponents interacted in many different economic games, where
the monetary payoffs continually changed, reflecting the evolving, multifaceted pressures of the
social world. Despite different contexts and shifting tensions in each specific game, a player’s
motivations remain relatively stable. To make it concrete, a player who is motivated by greed
will always try to maximize monetary payoff, which means cooperating in some games but
defecting in others, depending on the local payoff matrix. In contrast, a player motivated by risk
aversion will try to minimize potential losses, which will yield a different structured choice pattern
across games. It is only by observing behaviors across a number of contexts, each with different
tensions, that an individual can infer the latent structure (i.e., motivation) associated with a player’s
choice patterns. The better people are at inferring another player’s hidden motivation, the more
successfully they use this information in novel contexts to competitively outwit that player. We
used model comparison to test competing psychological accounts of how humans might learn
about another’s unobservable motivations. A model that captured the link between discrete
choice patterns and abstracted latent states outperformed models optimized for granular learn-
ing (i.e., learning the value of each discrete stimulus, which would be both costly and useless for
generalizing to new situations). Only by leveraging a formal model that capitalized on uncertainties
found in the social world could we show that correctly inferring the motives of another person
rests in the ability to combine prior knowledge with specific learning strategies.

Building multifaceted social reward functions
Models of social learning should also account for the fact that every person has a different reward
function and this social reward function can change depending on the context or group
dynamic. One particular model class, called inverse RL, provides a framework through which
reward functions can be inferred, rather than hard coded, thus bridging the disconnect between
traditional RL algorithms and actual social learning [56,57]. In inverse RL, observed behaviors are
used to infer the unknown structure of a person’s preferences [57,58], which enables us to learn
from others even when they do not share our particular set of predilections [59]. In one clever
experiment, the researchers set up the enduring lunch problem many of us are acquainted
with – determining how much time to spend walking around in search of our desired food truck
[60]. Subjects were asked to predict another’s food preferences after watching that person
navigate through the local environment in search of the perfect lunch. The researchers found
that beliefs about another’s preferences incorporated three causal factors: what an agent
perceives, the agent’s prior beliefs, and the causes of the agent’s actions. Just like in the real
world, the model enabled inference to occur in a multitude of ways. We can make forward
8 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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inferences about what others believe from their percepts, we can backwardly infer a certain desire
based on actions, or some combination of both. The most sophisticated model incorporated
mentalistic inference and therefore was able to capture social learning far better than the other
more impoverished models that did not formally model the mentalizing processes. Moreover,
the winning model was successful at capturing inferences about the agent’s beliefs across a
range of situations. Generative models that incorporate evidence from social and developmental
science, detailing the depth and flexibility by which people think about the hidden states of others,
have helped better characterize the precise computations governing the high-level capacity to
mentalize about others [61].

Researchers will be able to develop useful computational models that better account for the
complexities of the social world if they additionally allow learning to occur from multiple and
evolving reward sources [62]. At the most basic level, value functions in social models should
not be optimized to learn from many, exact repetitions (a behavioral pattern that rarely occurs
in real life), but instead should be optimized to capture both incremental and dramatically shifting
rewards [46]. A computational model that reflects the reality of our social worlds should also
ideally have a reward function that accounts for the difference between rewards accrued for
the self and those accrued by others [63,64], which would enable rewards to be computed in
group settings [45]. Furthermore, reward functions sensitive to context can reveal nuance in
how people construct and represent social value. Rather than learning about an individual’s
global social value (e.g., generosity), people in the real world routinely attend to situational factors
that can bolster or mitigate value representation (e.g., only making donations in the presence of
others).

Perhaps the most challenging problem is creating a reward function that can capture the broad
range of rewarding stimuli in the social world (smiles, thoughtful emails, party invitations, marriage,
etc.) all of which can be diagnostic when figuring out how to behave with others. Since emotions
are known to provide relevant feedback to foster useful action tendencies [65,66], they are well
situated to translate external rewards into an internal value signal [67–70]. For example, emotions
may provide both real (e.g., joy) and fictive (e.g., regret) value signals that can fine-tune learning
[71]. Applying a formal structure for how emotion biases learning [72–74], perhaps by associating
an affective experience with prediction errors [70], can simplify and organize how disparate social
rewards feed into a biologically plausible reward function.

Leverage prior research to inform the model
To account for the fact that in the social world one person’s actions affect another’s internal state,
researchers should turn to the trove of empirical work conducted in social psychology and
behavioral economics that has detailed the nature of these social dependencies [75–77]. Rather
than rediscovering information from scratch, embracing existing knowledge about attribution
[78], attitudes [50], social influence [79], group dynamics [80], and social preferences [81–84],
and embedding this knowledge in computational frameworks, promises more well-specified
questions and models [85]. This strategy can be implemented at various levels of abstraction,
including how we determine what is being represented (e.g., which boxes get included in
Figure 1 or the values we assume for each box) and the architecture of those representations
(e.g., how the boxes connect). For example, category-based expectations of how others should
behave [86] shape the moral obligations we place on others [87] and can swiftly bias the impres-
sions we form [88]. Even altering just a few of the assumptions in a more traditional RL framework
to incorporate this social knowledge has been successful in describing how humans navigate the
social learning problem. For instance, a negative first impression can be so powerful that people
may ignore subsequent positive social information, effectively abolishing a learning effect [89]. On
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 9
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Outstanding questions
What is the representational space that
we use to characterize the internal
state of our social partners? How do
the dimensions of this space depend
on the extent of our interaction with
this partner (e.g., waitress at a restau-
rant versus our date)?

How do people simplify the complexity
of the intractable inference problem of
social learning? What information is
lost through such simplifications and
what pathological behaviors might
emerge as a consequence?

Do people use complex learning
strategies when first working through
a novel inference problem, but
transfer to simpler, more biologically
plausible strategies once some
knowledge is acquired? How can we
create models to reflect multifaceted
learning strategies?

Is there a fixed mapping between
social behavior from impoverished
social tasks commonly fit with
computational models and the
complex behaviors observed in the
wild? If so, which dimensions of real-
world behavior map onto the things
that are most commonly measured in
the laboratory and which do not?

How can experiments be designed to
maximize the identifiability and
construct validity of the reward
function?
the flip side, informing the model of an individual’s social priors or beliefs about the world [16,90]
can speed the learning rate [77,91] and these models fair far better in describing how people
actually learn in strategic situations [61].

Well-informed social computational models become particularly useful when they are built to
adjudicate between existing social psychological theories that offer opposing learning accounts.
Humans learn in a variety of ways, including by observing the behaviors of others. Observational
learning can occur through emulation, in which individuals infer the other agent’s goals and inten-
tions, or through imitation, in which individuals mimic the actions of other agents. Thus, emulation
and imitation formalize two assumptions about the depth of inference problem being solved, in
particular, whether the inference includes another’s internal state. Although theoretical arguments
suggest that culture is propagated through pure imitation, conflicting evidence reveals how little
we know about when emulation or imitation is used as an efficient learning strategy [92,93]. By
incorporating prior theoretical and empirical research from social and developmental psychology
into a formal computational framework, we can figure out when these learning strategies might
dominate. Researchers recently examined whether uncertainty modulates the degree to which
an individual switches between imitation or emulation [94], hypothesizing that if a teacher’s
observed actions become too stochastic, emulation should be favored. If ascribing the link
between choice and goal inference during emulation becomes too difficult, however, then an
imitation strategy should be favored. Through model comparison, the researchers identified
that observational learning is actually a hybrid of both strategies, where the degree of uncertainty
acts as a dial that dictates which of the two strategies is deployed in the moment. By embracing
the complexities of a real-world problem and formalizing them within the model, the researchers
were able to successfully test simplifying assumptions embedded in standard models to reveal
that emulation is only favored once the learning signal becomes sufficiently reliable, elsewise
imitation is the default strategy.

At minimum, to avoid psychologically implausible mechanisms, social models should not operate
on generic representational or architectural assumptions [95]. Take the example of exploration
and how people collect information to optimize their future behavior. Despite accumulating
evidence that people are selective about when and how they explore [96], many RL models
instantiate algorithms that sample actions at random [15,97]. Applying random exploration
algorithms to simplified task designs can corrupt measures of exploration, making the algorithms
susceptible to biases and, at the end of the day, hard to interpret [24,25,97]. In the social world,
one way to explore is to observe others. Rather than indiscriminately learn from anyone (which
would bear out generations of fools), we use information about experience and expertise,
which helps when deciding who to learn from [98–102]. Research reveals that people wisely
neglect the naïf and attend to those who have experience [103]. By explicitly outlining this
social knowledge in the model, we have gained a flourish of new insights into the computational
representations of the social mind [102,104–107].

Concluding remarks
By adopting a framework inspired by our existing knowledge about social, developmental, and
cognitive learning processes, we can go beyond explaining behaviors in laboratory tasks to
explaining those that occur betweenmultiple interacting people in the wild. Even though navigating
through the social world is an enduring challenge, people routinely display behaviors demonstrat-
ing that they can successfully learn about, and from, other people. To produce amodel that reflects
these real-world successes, we need to carefully consider the impact of simplifying assumptions,
construct paradigms that reveal the complexity of our social representations, allow learning
to occur from multiple reward sources, and formulate social learning theories in precise,
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mathematically tractable terms. There is no doubt a tension between the complexity of a
social model and its tractability for standard uses and we are not suggesting that a ‘model
of everything’ needs to come before a ‘model of anything’. Instead, we advocate for the
construction of tasks and models that embrace the complexity necessary to answer important
questions in social learning, while also employing assumptions that limit complexities unrelated
to the question of interest. As others have said before us, we see mathematical precision as
potentially beneficial, but not a panacea, especially when the mathematical tools are ill-equipped
to capture the complexity of the social world. Indeed, simple models can tempt us to substitute
a mathematically tractable problem for the one that we really want to answer – a peril of statistical
modeling that statistician George Box referred to as ‘mathematistry’ [42,43].

However, with the proper tools in hand, there are many questions that can be readily tackled
(see Outstanding questions). Together, employing these practices will enable the social learning
problem to be bounded andwill buffer against ill-specifiedmodels that can lead tomisinterpretations
about what gives rise to social behaviors. Of course these principles should be adopted alongside
good model practices, for example, employing model comparison, doubting the winning model’s
assumptions, testing whether the model generalizes to new contexts, creating generative, rather
than descriptive models, and the list goes on [108,109]. Our hope is to raise awareness about the
issues that arise when applying computational models to social interactions and provide a theoretical
scaffold that can bridge social cognition and computational psychology. This can provide a
promising foundation for measurable progress for years to come.
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