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Significance:

For nearly a century, scientists have asked how humans learn about their worlds. Learning
models borrowed from computer science—namely, reinforcement learning—provide an elegant
and simple framework that showcases how reward prediction errors are used to update one’s
knowledge about the environment. However, a fundamental question persists: what exactly is
'reward'? This gap in knowledge is problematic, especially when we consider the multiplicity of
social contexts where external rewards must be contextualized to gain value and meaning. We
leverage electroencephalography to interrogate the role of emotion prediction errors—violations
of emotional expectations—during learning. We observe distinct neural signals for reward and
emotion prediction errors, suggesting that emotions may act as a bridge between external
rewards and subjective value.

Abstract:

Reinforcement learning models focus on reward prediction errors (PEs) as the driver of behavior.
However, recent evidence indicates that deviations from emotion expectations, termed affective
PEs, play a crucial role in shaping behavior. Whether there is neural separability between emotion
and reward signals remains unknown. We employ electroencephalography during social learning
to investigate the neural signatures of reward and affective PEs. Behavioral results reveal that
while affective PEs predict choices when little is known about how a partner will behave, reward
PEs become more predictive overtime as uncertainty about a partner’s behavior diminishes. This
functional dissociation is mirrored neurally by engagement of distinct event-related potentials. The
FRN indexes reward PEs while the P3b tracks affective PEs. Only the P3b predicts subsequent
choices, highlighting the mechanistic influence of affective PEs during social learning. These
findings present evidence for a neurobiologically viable emotion learning signal that is
distinguishable—behaviorally and neurally—from reward.
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Introduction

Reward prediction errors (PE)—the difference between expected and experienced reward—serve
as the dominant mechanism for explaining how people learn to make adaptive, value-based
decisions®®. Reward PEs function within a reinforcement learning (RL) framework, illustrating
how people adjust their actions based on past experiences to achieve more successful outcomes’.
This framework has been successfully applied to explain a host of simple behaviors such as
avoiding financial losses! and navigating new environments®, to more complex behaviors, such as
determining who can be trusted®. While the term reward is frequently used to explain learning,
the fact that ‘rewards’ in the social world are abstract, difficult to quantify, and shaped by multiple
features of a social situation, suggests a gap between the externally ‘rewarding’ reinforcers
encountered (e.g., money, smiles) and how the brain interprets them as value. A critical unresolved
question thus centers around what exactly is ‘reward’ and how does the brain represent it? Here
we examine how the human brain computes external rewards into internal value during a social

learning paradigm.

An intuitive possibility for how external reinforcers are transformed into internal value comes from
the field of emotion. Decades of work indicate that emotions play a vital role in the decision-
making process'®!!, where stress inductions!?, mood inductions®3 and emotion regulation4 can all
impact choice. Indeed, several affective theories propose that emotions are the evaluation of
external rewards, and thus possess the capacity to influence future behavior'®*8, Building on this
theory, our previous research operationalized affect within an RL framework, which led to the
hypothesis that violations of emotion expectations—known as affective prediction errors (PEs)—
influence choice. By formally quantifying affective PEs as the difference between expected and
experienced emotion, we observed that affective PEs exhibit an independent effect that is stronger
than monetary reward PEs in predicting one-shot social choices'®. The distinction between emotion
and reward was further exhibited in an independent sample, where individuals at risk of depression
demonstrated selective impaired use of affective PEs but fully intact use of reward PEs in a social

exchange task.

Although this dissociation suggests affective PEs have a central role in guiding socially adaptive

behaviors, it remains unknown whether affective PEs also act as critical signals during trial-by-
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trial learning, where knowledge about others must be continually updated to adjust future choices.
Additionally, there is no evidence for the separability between affective and reward PEs at the
neural level. Neural separability—at the temporal, functional, or localization levels—between
affective and reward PEs would be strong evidence that emotion serves as a distinct learning signal

separate from reward, one that may transform external rewards into internal, subjective value.

To test whether affective and reward PEs are critical for learning and are separable at the neural
level, we used a repeated social exchange paradigm in conjunction with electroencephalography
(EEG). EEG was chosen for its superior temporal resolution capable of capturing unfolding neural
processes on the order of milliseconds. We a priori identified three potential event-related
potentials (ERPs) known to reflect changes in EEG activity in response to feedback or reward
processing. In particular, the feedback-related negativity (FRN) is an ERP thought to reflect the
evaluation of surprising events?®?! and is theorized to be the neural basis of reward PE
processing®?. Additionally, the P3a and P3b are commonly linked to various aspects of feedback
processing, including reward magnitude®3, reward valence?, and rare, surprising outcomes?>.
Given the mixed evidence of how these ERPs map onto the construct of reward, we were agnostic

as to which neural signal would preferentially index reward or affective PEs.

EEG was recorded during a repeated Ultimatum Game (UG), where participants (N=41) interacted
with three different partner types offering a range of fair to unfair monetary offers (fair, unfair,
neutral; see Methods and Fig. 1B). The repeated nature of the UG, five trials in a row per partner,
allowed participants to update their expectations of a partner based on the history of offers with
that person. We included two key measurements to enhance our understanding of how rewards
and emotions influence feedback processing and updating (Fig. 1A). First, rather than using
computational models to infer participants’ reward expectations?®%’, we asked them to report the
amount of money they expected to receive on each trial (ranging from $0 to $10). This allowed us
to compute trial-by-trial reward PEs as the discrepancy between the actual offer and the expected
one. Second, participants used a 2D affect grid to predict how they thought they would feel after
receiving an offer (affect expectation), and to express how they actually feel once the offer was
received (affective experience)®?8, This measure captures participant’s core affect, a consciously

accessible facet of subjective feelings that categorizes feelings into core dimensions of valence
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(pleasurableness) and arousal (alertness/intensity). We computed affective PEs for both arousal
and valence dimensions as the difference in participant’s expectation and experience on a trial-by-
trial basis (Fig. 1C). Together, these measurements allow us to map all three empirical PEs
(reward, valence, and arousal) onto distinct neural EEG signatures expressed during social
interactions (Fig. 1D).

[Figure 1 placeholder]

Results

Reward and affective PEs have separable contributions to learning. Given our prior work
found that valence, compared to reward PEs, exert a stronger influence on one-off decisions to
punish norm violators®®, we began by examining the marginal strength of reward, valence and
arousal PE signals when deciding to punish in a social learning context. This additive linear mixed-
effects model (LMM) represents a strict test of our theory since each PE type competes with all
others to explain variance during learning. Replicating our prior research, we found that both
valence (f = —-0.76 £ 0.11,z = —6.65,P < 0.001) and reward PEs (f = —0.67 + 0.14,z =
—4.75,P < 0.001) have independent contributions when learning when to punish. That is,
participants punished at higher rates when experiencing more unpleasantness (valence) or less
reward than expected. Unlike our prior results, however, we observed no unique contribution of
arousal PEs on decisions to punish (f = 0.13 +0.11,z = 1.14,P = 0.26) once valence and

reward PEs are accounted for.

To examine how the relationship between each PE type and choice changes over time, we
interacted PE type with round number. We observe that the strength of reward and valence PEs
change in opposite directions overtime (Table 1; Fig. 2A). Valence PEs exert the strongest
relationship to choice on the first round when uncertainty is greatest, and significantly weakens
over time as uncertainty about a partner’s behavior is slowly resolved. In contrast, reward PEs
show a marginally significant interaction with round number such that they weakly predict choice
in the beginning but become more predictive over time. Directly pitting both PE types against one
another reveals that valence PEs have a significantly stronger impact on motivating punitive
choices on the first round when compared to reward PEs (S coefficient test: z =-1.70, P = 0.04),

while reward PEs have a stronger, albeit not-significant, influence on the final round, when
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compared to valence PEs (z = 1.05, P = 0.15). This reversal reveals how valence PEs are more
impactful early on when uncertainty is greatest. Once participants have better estimates about the
type of offer to expect, reward PEs become more useful for informing whether to accept or reject
an unfair offer.

[Table 1 placeholder]

[Figure 2 placeholder]

Reward and emotion PEs indexed by separate and dissociable neural signals. We next
investigated if each PE—reward, valence, and arousal PEs—is represented by distinct and
separable neural architecture. We first standardized all PEs at the group level and used each PE
type as independent variables in separate linear mixed effects regressions predicting our a priori
ERPs of interest: the FRN, P3a, and P3b (see Methods). The FRN is known to encode both signed
and unsigned PEs???°, and RPE effects on the P3 component are also somewhat ambiguous on
what they index3°, potentially reflecting the magnitude of the PE rather than the valence?. Given
the lack of clarity around what exactly these ERPs index, we first tested whether absolute or signed
PEs predicted the ERPs of interests, and found more evidence for absolute, compared to signed,
PEs (see Supplement). Using the absolute value of each PE as the predictor, we found that trial-
by-trial FRN amplitudes were uniquely predicted by reward PEs (8 = —0.23+ 0.07,t =
—3.17,P = 0.003) but not valence (8 = 0.06 + 0.07,t = 0.91,P = 0.36) or arousal PEs (8 =
0.04 + 0.08,t = 0.44,P = 0.67; Fig. 3). In contrast, trial-by-trial P3b amplitudes were only
predicted by valence PEs (B = 0.06+ 0.02,t = 3.98,P < 0.001), but not arousal (8 =
—0.001 £ 0.01,t = —-0.71,P =0.48) or reward PEs (8 =0.03+0.02,t=1.37,P=
0.18; Fig. 3), and a beta-coefficient test showed that the valence PE effect was marginally greater
than the reward PE (Z = 1.44, P = 0.07). Finally, trial-by-trial P3a amplitudes were only weakly
linked to arousal PEs (8 = 0.04 + 0.02,t = 1.90,P = 0.07), and not associated with either
valence (f = 0.01+ 0.02,t = 0.18,P = 0.86) or reward PEs (f = 0.04 + 0.02,t = 1.69,P =
0.10; Fig. 3; see supplement for an exploratory model showing that the P3a is best tracked by offer
extremity). To ensure that we were capturing all possible electrophysiological signatures of
reward, valence, and arousal PEs (which we might have missed with a pure a priori ERP approach)
we additionally employed a data-driven method that does not rely on predefined signals®!. Results

from this data driven approach showed converging evidence for separate spatiotemporal clusters
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in response to offers for reward and valence PEs (see Supplement). Taken together, these results
are the first to illustrate that emotion and reward learning signals are separately encoded in the

brain.

[Figure 3 placeholder]

To assess the neural learning effects on choice, especially given our behavioral findings showing
that the relationship between PEs and choice varies with round number, we next allowed each ERP
to interact with round. Results reveal a significant simple effect of P3b on choice (Table 2), as well
as an interactive effect between P3b and round on choice (Table 2; Fig. 2B). This mirrors our
behavioral finding, revealing that the P3b—which is uniquely associated with valence PEs—is the
sole neural signal driving choice, and the strength of this neural signal diminishes over time as
more information is gleaned about a partner’s behavior. Although not statistically significant, the
interaction between FRN and round also reflects the behavioral pattern, where the relationship
between FRN and choice strengthens with time (Table 2; Fig. 2B). Collectively, these findings
illustrate that both FRN and P3b uniquely track reward and emotion learning signals, but that only

emotion PEs, indexed by the P3Db, are relevant for choice.

[Table 2 placeholder]

Reward and affective PEs are resolved through different mechanisms. Although most PEs are
no longer predictive by the final round—indicating rapid learning—it remains unclear which
component of the PE drives the error signal. On one hand, participants might adjust their
expectations to make upcoming events less surprising. This dovetails with reinforcement learning
accounts which predominantly emphasize adjusting PEs by altering expectations (i.e., increasing
Q-value of an action to anticipate a greater reward next time). On the other hand, participants could
alter experiences (perhaps by employing emotion regulation tactics) to lessen an event’s impact.
While research on affective forecasting suggests that accurately predicting future emotional events
is challenging®?33, one could use emotion regulation strategies to modify responses to events like
unfair offers®. These two accounts present divergent theories about how affective and reward PEs

might drive learning.
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To explore the theory that modifying expectation can reduce both affective and reward PEs, we
examined how reward, valence, and arousal expectations changed throughout the task. As
expected, participants show the largest update in both reward and emotion expectations between
the first and second rounds (Table 3, Fig. 4). We then probed how expectations change between
rounds two through five to understand if participants continue to adapt after an initial surprise.
Reward expectations for this period reveal that participants continue to refine beliefs about their
partners, baring evidence of continued learning through reward PEs. In contrast, expectations
about valence and arousal remain largely consistent across all partner types from rounds two
through five, suggesting participants do not continue to adjust their affective expectations after the
initial round. In other words, only reward—and not affective—PEs are resolved by altering
expectations. Next, we examined whether experiences change across the task. We found that
participant’s subjective reports of their valence and arousal experiences changed significantly over
rounds. Specifically, negative reactions to unfair offers wane over time, and the intense positive
feelings of receiving a fair offer also diminish as you learn more about the fair partner (Table 3,
Fig. 4). Given that monetary offers are fixed by task design, offers do not significantly vary across
rounds. Thus, these results paint a clear distinction in how affective and reward PEs are leveraged
for learning: after an initial large update of expectations, reward PEs are resolved by adjusting
reward expectations (dovetailing with the RL literature), whereas affective PEs are managed by

aligning emotional experiences with prior predictions.

[Table 3 placeholder]
[Figure 4 placeholder]

Discussion

While emotions clearly influence learning and decision-making®®, most reinforcement learning
models do not incorporate emotions as an error signal driving social learning. Instead, these models
predominantly emphasize reward PEs as the central driver of behavior, with some exceptions®=+,
In this study, we leverage EEG to determine if emotions serve as a key learning signal in a repeated
economic game, and whether these emotion signals can be differentiated from reward PEs. Our
behavioral results show that affective PEs have an independent and stronger contribution to choice,

especially when there is significant uncertainty about a partner’s actions. As this uncertainty
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decreases with experience, reward PEs begin to play a more dominant role in guiding choice. At
the neural level, distinct ERPs were found to index each PE: the FRN corresponds most closely
with reward PEs, the P3b is associated with valence PEs, and the P3a is indexed by arousal about
offer extremity. Collectively, these findings suggest that reward and emotion learning signals have
dissociable neural locations with distinct temporal trajectories. At the trial level, that the temporal
trajectory of the FRN comes online first and is then followed by the P3b, suggests that monetary
offers are likely initially evaluated based on how surprising the reward is (e.g., “How does this
monetary offer differ from my reward expectations?”) and only later are violations of emotion
expectations incorporated (e.g., “I feel better/worse than anticipated”). An examination of social
learning over time, however, shows that affective PEs are most powerful during early trials and
attenuate as uncertainty is reduced. In contrast, reward PEs follow the opposite pattern, growing

in predictive power over time.

In contrast to reward-centric accounts that dominate the learning literature®, our findings
underscore that violations of affect expectations play a particularly privileged role in social
learning, a role that cannot be solely subsumed by rewards. Although rewards may be sufficient
for building successful artificial agents, there is growing concern about whether external reward
functions are enough to explain the breadth and flexibility of human decision-making, and it has
been suggested that emotional signals might bridge this gap3®-41. While prior affective research has
primarily explored long-term affective forecasting errors®® or contexts absent of trial-by-trial
learning®®, here we provide a direct assessment of affective learning signals at the neural level.
Specifically, we find that the P3b component, which tracks valence PEs, stands as the sole neural
predictor of social choice. This aligns with prior work showing that the P3b integrates information
from multiple learning mechanisms relevant for decision policy changes3#2. While far less
influential, reward PEs still contribute to learning?2®4344 and our findings show that the FRN
uniquely indexes monetary reward PEs—even when controlling for affective signals. In summary,
a comprehensive explanation of human decision-making necessitates consideration of both

rewards and emotions.

While research indicates that emotional stimuli, such as faces or words, are sometimes processed

relatively early*>-#7, our results indicate that evaluations of emotionally charged social exchanges
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are initially evaluated based on reward. While at first blush this might appear as a discrepancy,
emotional experiences unfold over time, which include initial attention to the event and subsequent
evaluation®. That we probe participants’ self-reports of their affective experience following the
offer, may align more consistently with the evaluation of an affective experience rather than initial
attention. This account aligns with other EEG work showing that late neural components, such as
the Late Positive Potential (LPP), are associated with emotional stimuli*®. Interestingly, the LPP
shares similar morphology with the P3b, is sensitive to a stimulus’s emotional saliency®, can be
influenced by cognitive reappraisal or attentional shifts®, and is also known to modulate attention
during late-stage processing®>°3. Taken together, this suggests that emotional processing that

unfolds on later temporal trajectories can still be influential for higher cognition.

Our data also suggests that affective experiences habituate with repeated experiences, giving rise
to smaller prediction errors over time. The consequence of blunted affective responses through
experience (i.e., reduced prediction errors) means that the emotional experiences of an initial
interaction with a social partner is amplified compared to subsequent encounters. This pattern is
consistent with normative prescriptions for learning in uncertain and dynamic environments®4-5¢,
highlighting the possibility that the attenuation of affective experience might serve an important
role in optimizing learning under uncertainty. Future work could explore this further by extending
our paradigm to manipulate a broader array of factors that influence normative learning dynamics,

such as outcome stochasticity®>°7, volatility®*°?, and temporal structure3-%8,

By taking the simple, albeit novel, step of incorporating emotion as an error signal into a
framework, we reveal the pivotal role of affective PEs in driving social learning. With the precise
temporal neural time course of EEG, we provide evidence for early processing of reward PEs and
the later processing of affective PEs when learning about other people. Although violations of
emotion expectations are integrated relatively late in the decision process, they play the strongest
role in predicting social choice—providing evidence of a neurobiologically plausible distinct

emotion error signal.

10


https://doi.org/10.1101/2024.01.24.577042
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.24.577042; this version posted January 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Materials and methods

Participants

Participants (N = 41, 25 female, mean age = 20.8 + 4.4) received either monetary compensation
(%15 per hour) or course credits and provided informed consent in a manner approved by Brown
University’s Institutional Review Board under protocol 1607001555. A power analysis of the
unique effect of valence prediction error on choice in our prior work!® revealed that 18 participants
would be sufficient to detect this effect with an alpha of 0.05 and power (beta) of 0.80.
Accordingly, we aimed to exceed this and collected a sample of 40 participants which matches

sample sizes of recent EEG studies focusing on the FRN and P3003142,

Task and procedure

Participants played an adapted repeated Ultimatum Game®®€° that included subjective emotion and
reward ratings'®28, Participants were told they were playing with past participants who gave offers
across five rounds, conditional on participant’s choices to accept or reject each offer—similar to
strategy methods used in economics®®. Unknown to participants, their partner’s offers were
generated from one of three normal distributions representing three types of proposers: 1) “unfair”
proposers gave offers according to a normal distribution with a mean of $1 and SD of 0.50; 2)
“neutral” proposers gave $3 on average with a SD of 0.50; and 3) “fair” proposers who gave $5
on average with a SD of 0.50. Participants played with 36 unique partners, 12 of each type and all
five offers from each partner were randomly drawn from their respective normal distribution. We
used faces from the 74 image MR2 database®? to represent partners and 36 faces were pseudo-
randomly pulled from this database per participant to achieve a balanced distribution of images of
men and women of European, African, and East Asian ancestry. Subjective affective predictions
and experiences were reported using a 500-500 pixel two-dimensional affect grid where the
horizontal axis was valence (unpleasant/pleasant feelings) and the vertical axis was arousal
(low/high intensity feelings). Both dimensions range from -250 to +250. To familiarize
participants with this affect grid, participants completed an emotion classification task prior to the
repeated UG. Participants made affect ratings of 20 canonical emotion words (for example, angry,

sad, and surprised) on the grid, twice for each word, in a randomized order. Training participants

11
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to interpret this subjective affect grid has shown strong convergent validity with other approaches

for emotion ratings®2.

We calculated affective prediction errors (PES) on a trial-by-trial basis by measuring the
discrepancy between participants’ actual affective experiences and their affect expectations.
Emotion PEs can be defined on both valence and arousal dimensions. A valence PE was computed
by subtracting the predicted level of (un)pleasantness of an offer from the actual experienced
(un)pleasantness, while an arousal PE was the difference between the expected arousal and actual
experienced arousal. For instance, if a participant felt unpleasant about receiving an offer (e.g.,
rating it -200) but had anticipated feeling slightly pleasant (e.g., rating it +40), the valence PE
would be -240 (-200 minus +40). Similarly, reward PEs were calculated by subtracting the

predicted monetary reward from the actual offer given to the participant for each trial.

The was UG comprised of nine blocks of four partners each (20 trials per block), with self-paced
rests between blocks for a total of 180 trials. Participants additionally completed pre-UG and post-
UG likability ratings for all 36 partners on a visual analog scale (0 — 10, in increments of .01). The
experiment was delivered in Matlab (The MathWorks, Inc.) using the Psychtoolbox-3 package and
included stimulus presentation, event, and response logging. A standard computer mouse and

keyboard were used for response registration.

During the UG, participants were first shown a picture of their partner for 1000ms, followed by a
fixation cross (500ms, same timing for all fixations). Participants were then given cues for reward
predictions ($?) or affect predictions (E?; 1000ms each); these cues indicate that participants will
be making the required response on the next screen. Reward predictions (how much participants
expect the partner to offer) are reported on a visual analog scale ($0 - $10) and participants have
unlimited time to respond. Affect predictions (how participants expect to feel after the offer) are
reported on the valence-arousal grid and participants are required to answer within 5s. The order
of predictions was counterbalanced and separated by fixations. Following predictions, the offer
was given (2000ms) in dollar and cent format (e.g., $2.37), and followed by another fixation.
Participants were then given an affective experience rating cue (E; 1000ms), which indicated that

they should rate how they felt about the offer using the affect-grid (required within 5s). A fixation
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followed and then participants were given a choice cue (C; 1000ms) indicating they would need
to make their choice. The choices to accept or reject were presented on the screen (e.g., [A] [R]),
and the order of these options was counterbalanced. When participants were matched with a new
partner, they were presented with a waiting screen for 1-4s before starting the next trial.

Prior to experiment, participants filled in the following two personality questionnaires: the 20-item
Toronto Alexithymia Scale®* and the Temporal Experience of Pleasure Scale®®. These measures
were registered as potential control variables and for other purposes not addressed here.
Participants were then seated in a shielded EEG cabin. Prior to completing the emotion

classification and UG task, participants performed practice trials.

Psychophysiological recording and processing

EEG was recorded using BrainVision recorder software (Brain Products, Munchen, Germany) at
a sampling rate of 500 Hz from 64 Ag/AgCl electrodes mounted in an electrode cap (ECI Inc.).
Data was collected using Cz as a reference channel and re-referenced to average reference offline.
Electrodes below the eyes (101, 102) and at the outer canthi (LO1, LO2) recorded vertical and
horizonal ocular activity. At the end of the experiment we recorded prototypical eye movements
(20 trials of each: up, down, left, and right) for offline ocular artifact correction. We kept electrode

impedance below 10 kQ.

EEG data were processed using Matlab (The MathWorks Inc.) using the EEGlab toolbox®® as
previously described*? and included the following steps: (1) re-referencing to average reference
and retrieving the Cz channel, (2) removal of blink and eye movement artifacts using BESA®’, (3)
bandpass filtering of .1 — 40 Hz, (3), (4) epoching the ongoing EEG from -200 to 800ms relative
to offer onset, (5) removal of segments containing artifacts, based on values exceeding £150 pV
and gradients larger than 50 puV between two adjacent sampling points. Baselines were corrected
to the 200ms pre-stimulus interval (offer onset) using the regression method in subsequent

analyses®8.
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To define the time windows for single-trial analyses of FRN, P3a and P3b amplitudes, we first
determined the grant average peak latencies of FCz, FCz, and Pz, respectively. Accordingly, the
FRN was quantified on single trials as the average voltage within an interval from 315 to 415ms
after offer onset across all electrodes within a fronto-central region of interest including F3, Fz,
F4, FC3,FCz, FC4, C3, Cz, C423, To control for P2 effects on the FRN, the P2 amplitude was also
extracted within each trial as the average voltage between 199-299ms across fronto-central
electrodes F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2, and included as a regressor in the analyses. P3a
amplitude was quantified on single trials as the average voltage within a 363-463ms interval post-
offer across fronto-central electrodes F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C22. P3b amplitude was
quantified on single trials as the average voltage within a 530-630ms interval post-offer within a
parietally-focused region of interest including CP1, CPz, CP2, P1, Pz, P2, PO3, POz, PO4%,

Analyses

Reward PEs (RPE) was determined as the offer minus the reward prediction given by participants
Valence and Arousal PEs were determined similarly: the affective experience participants reported
upon receiving the offer minus participant’s affective prediction for how they would feel after the
offer. Prior to analyses, reward, valence, and arousal PEs were standardized but not mean centered,
as zero represents a meaningful value on these scales (predicted and actual experiences are the
same). Inspection of the behavioral data identified four trials in which impossible affect ratings
were given (valence or arousal ratings outside of the 500 by 500-pixel grid) and these data were

excluded from relevant analyses.
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Table 1. Separable effects of valence and reward PEs predict learning to punish
Punishi~ Bo + BiReward PEj, + B,Valence PE; + B3Arousal PE;; + f,Round;,
+ BsReward PE;;: Round;, + B¢Valence PE;,: Round,,
+ B,Arousal PE;,:Round;, + ¢

Variable Estimate (SE) z p

Punish
Intercept -1.61 (0.32) -5.03 <.001***
Reward PE -0.50 (0.17) -3.02 .003**
Valence PE -0.99 (0.15) -6.42 <.001***
Arousal PE 0.05 (0.14) 0.34 737
Round 0.04 (0.03) 1.66 10
Reward PExRound -0.06 (0.03) -1.87 .06
Valence PExRound 0.08 (0.03) 2.30 .02*
Arousal PExRound 0.03 (0.03) 0.98 33

Note. Reward PEs are calculated by taking the difference between the experienced and predicted
reward. Valence PEs and Arousal PEs are calculated by taking the difference between the
experienced and predicted emotion on the relevant affect dimension. All variables were scaled
but not mean-centered, as the zero point on each scale refers to the meaningful instance where
expectations matched experience. The model includes subject-specific random intercepts and
slopes for Reward PE, Valence PE, and Arousal PE. The dataset includes 7,376 observations
from 41 participants. *** p <.001, ** p < .01, * p <.05.
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Table 2. Only P3b predicts choices over rounds

Punishi,t"‘ BO + Blpgbi,t + szgai,t + BSFRNi,t + ﬁ4P2i,t + ,B5R0undl,t
+ BeP3b;: Round; + B,P3a;.:Round;; + BgFRN;.: Round;,

+ BoP2;;:Round;, + €

Variable Estimate (SE) z p
Punish
Intercept -1.29 (0.29) -4.44 <.001***
P3b 0.29 (0.09) 3.18 001***
P3a 0.06 (0.11) 0.52 0.60
FRN -0.01 (0.10) -0.12 0.90
P2 -0.09 (0.05) -1.83 .07
Round -0.01(0.11) -0.01 99
P3bxRound -0.06 (0.03) -2.39 .02*
P3a xRound -0.03(0.03) -0.78 43
FRNxRound 0.05 (0.03) 1.69 .09
P2xRound -0.03 (0.03)  -0.99 32

Note. P2, FRN, P3a, and P3b are all trial-by-trial amplitudes in response to the offer (see
Methods). All variables were scaled but not mean-centered. The model includes P2 as a
control for the FRN since the FRN is defined as the N2 amplitude. The model includes
subject-specific random intercept. The dataset includes 5,351 observations from 35

participants.
*** <001 **p<.01*p<.05
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Table 3. Different mechanisms underlying resolution of reward and affective PEs
Round 1 — 2 Update Rounds 2-5 Update Round 1 — 5 Update

(Expectations) (Expectations) (Experience)
t-score (P-value) B + SE (P-value) B + SE (P-value)

Fair partner

Reward 9.53 (<.001***) 0.0240.01 (.02%) -

Valence 9.23 (<.001***) 0.01+0.01 (.44) -0.0440.01 (<.001***)

Arousal 5.00 (<.001***) -0.001+0.02 (.94) -0.08+0.02 (<.001***)
Neutral partner

Reward -3.00 (.005**) -0.02+0.01 (.09) -

Valence -1.44 (.16) -0.02+0.01 (.16) 0.02+0.01 (.05)

Arousal -1.45 (.15) -0.03+0.01 (.02%) -0.014+0.01 (.35)
Unfair partner

Reward -14.19 (<.001***) -0.05+0.02 (.006**) -

Valence -10.36 (<.001***) 0.01+0.02 (.51) 0.0740.02 (<.001***)

Arousal -2.28 (0.03%) -0.01+0.02 (.55) -0.003+0.01 (.82)

Note. Rounds 1-2 update (expectations) shows the result of a paired t-test comparing
expectation values from round 2 to round 1. Rounds 2-5 update (expectations) shows the result
of a LMM comparing how expectation values change between rounds 2-5. Rounds 1-5 update
(experience) shows the result of LMMs comparing how emotional experiences change between
rounds 1-5. Reward experiences were defined by task parameters and are stable across rounds
(see Methods). ***P<.001, **P<.01, *P<.05.
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Figure 1. Repeated Ultimatum Game (UG) Design. A) Trial Design. Participants are partnered
with another individual and play five rounds of a repeated UG. Participants first see a photograph
and name of their partner (Partner Face), before being asked to report how much money they
expected to receive in an offer (Reward Expectation) and how they expected to feel after the offer
(Affect Expectation). Next, participants received an offer showing the proposed amount for the
participant as well as the amount kept by the partner (Offer). After receiving the offer, participants
indicated how they felt (Affective Experience) before deciding to accept or reject the offer
(Decision). Timings show the average maximum duration of each of the stages, with “‘until
response”’ meaning the program waited until the participant gave a response. B) Partner Offers.
Unknown to participants, offers were determined by different normal distributions per partner
type. On average, unfair partners gave $1, neutral gave $3, and fair gave $5; all partners’ normal
distributions used a standard deviation of $0.50. C) Prediction Errors (PEs). On each trial we
compute three empirical PES: a reward PE (0), a valence PE (v) and an arousal PE (o). In the
equations, y refers to an individual’s prediction about the reward or emotion they would
experience, while y refers to their actual experience. D) EEG Offer Activity. Our analyses focus
on the EEG activity occurring after the offer presentation. The average EEG activity at electrode
FCz in response to offers is shown alongside a topography of the average activity across electrodes
between 200ms to 250ms.
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Figure 2. Separable behavioral and neural effects of valence and reward PEs predict learning
to punish. A) Valence and reward PEs predict choice differently across rounds. The data on
each graph reflect the probability of rejecting the offer from Table 1 and the colour of each line
indicates the round number (1 — 5) of the Ultimatum Game. Negative values reflect negative PEs,
indicating less pleasantness (valence), arousal, and money (reward) than expected. B)
Relationship between ERP and choice over round. The data on each graph reflect the probability
of rejecting the offer from Table 2 and the colour of each line indicates the round number (1 — 5)
of the Ultimatum Game. Positive values reflect positive EEG amplitudes, indicating a greater P3b,
P3a or FRN effect. Shaded areas reflect +1 S.E. ***P<.001, **P<.01, *P<.05, t = 0.06.
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Figure 3. Separate ERPs index reward and affective PEs. The data on each graph reflect the
beta coefficient from LMMs modeling the marginal contributions of the absolute value of each PE
type on separate ERPs: the FRN, P3a, and P3b. Error bars reflect +1 S.E. ***P<.001, **P<.01,

*P<.05.
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Figure 4. Learning in the Ultimatum Game. A) Valence measurements. Valence PEs are

calculated as the difference between valence experience and expectations for each round. Valence
ratings are between -250 (unpleasant) and 250 (pleasant). B) Arousal measurements. Arousal
PEs are calculated as the difference between arousal experience and expectations for each round.
Arousal ratings are between -250 (low intensity) and 250 (high intensity). C) Reward
measurements. Reward prediction errors (PEs) are calculated as the difference between reward
offer and reward expectations for each round. Reward measurements are between $0 and $10.All
data are averaged within and then across participants for each round and partner type. All error
bars reflect + 1 S.E. Statistical tests are shown in Table 2. ***P<.001, **P<.01, *P<.05.
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